LIST OF FIGURES

Figure 1.1: Red garnet inclusion is paragenetically found as protogegetic in in Natural faceted diamond. (formed before the growth of the host minerals. ... 5

Figure 1.2: Three phased inclusions are seen in Columbian emerald, Emerald is the matrix of inclusions found in green colour. Salt crystal boundary in high relief, gas bubble shows a least relief, H₂O is seen with an intermediate relief. .. 7

Figure 1.3: (A) Inclusion of tremolite (amphibole fibers) Ca, Mg, Fe, Al, silicate are from the emerald (Be, Al silicate, a green variety of beryl). These amphibole fibers, which Gübelin believed as tremolite, are characteristic of emeralds from Sandawana, Zimbabwe.

(B) Protogenetic inclusion of actinolite, a variety of amphibole is seen in Austrian emerald. (C) Calcite (CaCO₃) a protogenetic inclusion is found in Burmese ruby (Al₂O₃). .. 9

Figure 1.4: Inclusions of tourmaline (boron aluminum silicate) needles are found in quartz. (A) and (B) Schorl type of tourmaline inclusion is a black iron rich variety. .. 10

Figure 1.5(A): Landscape agate: (Asia Minor), oval shaped agate encloses a fossil conifer tree. Height of fossil tree 30 mm. 10

Figure 1.5(B): Polished surface of variegated variety of agate (chalcedony) from Lake superior, N. America shows zonal growth in concentric bands mostly of manganese oxide derived from organic moss. 12
Figure 1.5(C) : Moss agate is a green solution deposit in silica. Green moss mineral is derived from organic source of iron or manganese oxide (width 8 cm). ...11

Figure 1.6 : Tiger’s eye from Griqualand, South Africa is seen with chatoyant lustrous yellow and brown bands. (size 6 cm x 4 cm).13

Figure 1.7 : Structure and colour of precious opal is seen with scattering of light. ...15

Figure 1.8 : Baltic amber is seen with a fossil bug, from Amber mine in Kaliningrad oblast, Yantarny, Russia, (Bug of 1 cm across in amber). ...16

Figure 1.9 : 50 million year old amber is encased with a fossil of dragon fly inside. ...17

Figure 1.10: Natural imprisonment of a cockroach is seen as a fossil in amber. ...7

Figure 1.11: (A) Pearls, (B) the iridescent nacre inside a nautilus shell and (C) Pearl Harvest. ...18

Figure 1.12 A : The Great Barrier Reef is from Australia.20

Figure 1.12 B : Close up of polyps arrayed on a coral, waving their tentacles. There can be thousands of polyps on a single coral branch (Magnified view of polyps). ...20

Figure 1.12 C : The largest of all mollusks, the giant clam prefers the warm waters around Australia’s Great Barrier reef.21

Figure 1.13 : Faraday’s Gold Preserved in royal Institution.25

Figure 1.14 : 4th century Licaragus cup from glass with 70 nm particles of gold and silver as seen in the transmission electron micrograph, appears red in transmitted light and green in reflected light.26
Figure 1.15: Geometry of faceted Diamond – Geometrical Facets in Gem cutting – Table, 2. Crown, 3. Bezel, 4. Pavilion and 5. Culet- (Marcel Tolkowsky’s ideal proportions of geometry for a brilliant cut diamond. ..26

Figure 1.16: (A). An octahedral natural diamond in its host rock. (B). Cut & faceted Kohinoor diamond. ..29

Figure 1.17: The Big Hole, Kimberley, S. Africa. ...33

Figure 1.19: Personal collection of diamonds by Prof. Lawrence Taylor, University of Tennessee, Knoxville, USA, Photo complimentary, 8th June-2011. ..35

Figure 1.18: A picture of a diamond phenocryst in Kimberlitic xenolith of U.S.A. ...36

Figure 1.20: QEMSCAN Mineral map of kimberlite from South Africa, Olivine macro crystals in green with high relief seen under polarized microscope (cross nicols): spectacularly altered to various generations of serpentine. ..38

Figure 1.21: Window of diamond formation and preservation in the interior of earth. ...39

Figure 1.22: Xenolith - Mineral proportions of Peridotite in pie diagrams. .41

Figure 1.23: Kimberlite, A volcanic pipe rock, with the structures of piercement or diatremes. ..44

Figure 1.24: Providential delivery of diamonds to the surface of earth(Image: James W. Head III). ..47

Figure 2.1: Experimental facilities used for the thesis work.50

Figure 2.2: Energy level diagram showing the states involved in Raman signal. The line thickness is roughly proportional to the signal strength from different transitions. ..53
Figure 2.3	Schematic illustration of a confocal setup.	55
Figure 2.4	SEM Electron beam, induced processes in the sample.	58
Figure 2.5	A Schematic diagram of Scanning electron microscope (SEM). The electron beam is scanned by a set of scan coils and the secondary electrons are detected by the detector. By applying a positive potential to the Faraday cage, the secondary electrons are rejected completely.	59
Figure 2.6	Scanning Electron Microscope with EDAX -provision- (SEM-EDAX)- I. I. T. Lab - Nano centre, Chennai.	61
Figure 2.7	A picture of the Matrix-assisted laser desorption/ionization mass spectrometer (MALDI MS) at IIT Madras.	64
Figure 2.8	Schematic block diagrams - Matrix assisted laser desorption ionization time of flight mass spectrometer (MALDI TOF MS).	64
Figure 3.1	SEM image (A) and corresponding photograph (B) of the diamond sample containing inclusions. (C) Raman spectra collected from two different areas of the diamond, marked in the optical image shown in the inset. Weak Raman features are expanded. The optical image is from a face marked in B. The impurity features in Raman are marked in C.	69
Figure 3.2	(A) Optical image of the diamond sample. (B) Raman spectra collected from different regions marked in A. (C) and (D) are corresponding Raman images created by collecting the intensities in the range of 100–750 cm\(^{-1}\) and 1300–1400 cm\(^{-1}\), respectively.	72
Figure 3.3: SEM image (A) and corresponding EDAX maps (B–L) of the diamond containing inclusions. ...75

Figure 3.4: EDS spectrum and quantification data collected from the inclusion shown in the inset. ...76

Figure 3.5: (A) Optical image of the diamond sample containing inclusions. (B) and (C) are corresponding Raman images created by collecting the intensities in the range of 1300-1400 cm⁻¹ (B) and 100-750 cm⁻¹ (C). ..77

Figure 3.6: Raman spectra collected from four different diamond samples (A to D). Corresponding optical images of a portion of the diamonds are shown in the inset of each panel. The positions from which the Raman spectra are collected have been shown as a’ and ‘b’ traces. ..78

Figure 3.7: SEM image (A) and corresponding EDAX maps (B–L) of the same diamond sample containing inclusions. The data were collected from a different region, other than the one presented in Figures 1 and 2. (M) EDAX spectrum collected from the inclusion shown in A. ..79

Figure 3.8: SEM image (A) and the corresponding EDS maps (B–L) from other diamond samples. ...80

Figure 3.9: (A) MALDI mass spectra of diamond collected in the positive mode. B–D are the expanded views of the mass spectra showing the mass peaks due to Fe, Cr, and CrO (chromium sesquioxide) respectively. ..81
Figure 3.10: Scanning electron micrographs and an EDS spectrum from experiments involving growth of chromite on pre-existing seed crystals. (a) IrPt alloys entrapped by crystallizing Cr-spinel during cooling of 308°C over 1h (experiment ‘Ir 7.3 dynamic’, 5h). (b) Ru-sulfide entrapped by crystallizing chromite during cooling of 208°C over 1h (experiment ‘RuS dynamic’, 11h). (c) EDS spectrum of Ru-sulfide grain in (b), showing distinct X-ray peaks at Ru and S, as well as from elements in the surrounding chromite and glass matrix. ...86

Figure 3.11: Geological map of the Sittampundi complex (modified after GSI 1995, quadrangular map). Inset showing close-up of thick bands of chromite within the complex near Karungalpatti–Salem District – Tamil Nadu (Source Records of Geological Survey of India 1995). ...88

Figure 3.12: Bushveld complex with platinum ore minerals and diamondiferous kimberlite, South Africa. ...89

Figure 3.13: A) Photomicrograph of chromitite (5x, XP) showing chromite associated with pyroxenes and amphibole. B) Laurite within chromite grain. C) EDS spectra of laurite showing Os, S and Ru peaks. ...91

Figure 3.14: Ternary diagram of orthopyroxene displaying its chemistry. ...94

Figure 3.15: The chemical composition of the pyroxene specimens determined by the electron microprobe in this study. Solid circles = natural crystals; open circles = synthetic polycrystals. En-Enstatite, Fs-Ferrosilite, Wo-Wollastonite. ...96
Figure 3.16: Raman frequencies vs. Fe content for the enstatite-ferrosilite series. Solid circles = natural crystals; open circles = synthetic polycrystals. Data of enstatite reported by Chopelas (1999) are shown as open squares. ...98

Figure 3.17: Simplified inner structure of earth, after Bob Liebermann, elasticity of mantle minerals 23 July, 2008- CIDER.105

Figure 3.18: Bowen’s reaction series. ...106

Figure 3.19: Relative mineral proportions and phase transitions in (2000). Earth’s mantle (after Ringwood 1991; Agee 1998; Wood (2000) FP: ferropericlase; Grt: garnet; Cpx: clinopyroxeneOp: orthopyroxene; Mg-perovskite: MgSi-perovskite; Ca-Pvk: CaSi-perovskite. ...109

Figure 3.21: This figure shows the atomic scale structure of olivine looking along the axis (Pb nm setting) with the long b axis across the page and the short c axis up the page. Oxygen is shown in red, silicon in pink and magnesium/iron in blue, the three inequivalent oxygen, and two inequivalent metal sites are marked O and M respectively. A projection of the unit cell is shown by the black rectangle..114

Figure 3.22: Colour online – building units of olivine projected onto bc plane. ...115

Figure 3.23: Pyroxene projected onto ab plane (After Swastika et al.,) (a) (SiO4 tetrahedral unit) (b) (M1-O octahedral unit) (c) (M2-O) octahedral unit). ...115

Figure 3.24: Raman spectra from olivine. ...117

Figure 3.25: Polyhedral representation of the crystal structure of olivine (a-axis projection, b- horizontal). ...120
Figure 3.26: Ambient Raman Spectra of Olivine group minerals.122

Figure 3.27: K1, K2, and □ variations of olivine-group minerals. The abbreviations used are follows: V denotes the unit-cell volume and C, the mass parameter (M^0.5) proposed by chopelas (1991). The Raman spectrum data are obtained from RRUFF database (http://rruff.info/) and Lin (2001). The unit-cell volume data are obtained from sumino et al. (1976), sumino (1979), Lin (2001), and RRUFF database. ..123

Figure 3.28: Relationships between peak positions of the strongest doublet (K1 and K2) and Mg# value of forsteritefayalite series.123

Figure 3.29: Raman spectra in the range 100–900 cm^{-1} determined with the OMARS 89 (a) Synthetic coesite. (b) Small triangular coesite inclusion in diamond. The pressure was determined from the shift of the 521cm^{-1} peak according to v=520.6+2.9 (1) *P (GPa) (27). ..125

Figure 3.30: Coesite inclusions in the Venezuela diamond studied by the Raman Spectroscopy. Larger grain (close to the center) is surrounded by cracks, but around the smaller triangular grain (upper right side,) there are no cracks. The oval grain that is out of focus (upper left corner) is clinopyroxene as was confirmed by Raman spectroscopy. The presence of clinopyroxene inclusion confirms a coesiteeclogite assemblage of the diamond. The diamond size is about 2 mm. ..126