List of Figures

PART 1

Figure 1. Total phenolic content of total extract from *S. portulacastrum*. The data are the mean ± SD of 3 replicates

Figure 2. Reducing power of total extract from *S. portulacastrum*. The data are the mean ± SD of 3 replicates

Figure 3. Total antioxidant activity of total extract from *S. portulacastrum*. The data are the mean ± SD of 3 replicates.

Figure 4. Scavenging effects of *S. portulacastrum* extract on DPPH radical. The data are the mean ± SD of 3 replicates

Figure 5. Inhibition of the radical degradation of 2-deoxy-D-riboza of *S. portulacastrum* extract. The data are the mean ± SD of 3 replicates

Figure 6. Hydrogen peroxide scavenging activity of *S. portulacastrum* extract. The data are the mean ± SD of 3 replicates

Figure 7. FTIR Spectrum of a. hexane, b. dichloromethane, c. ethyl acetate and d. methanol of *S. portulacastrum*

Figure 8. GC-MS pattern of Phytoconstituents obtained from *Sesuvium portulacastrum*

Figure 9: The mass spectrum analysis and structure of Hentriacontane

Figure 10: The mass spectrum analysis and structure of L-(+)-ascorbic acid, 2,6-dihexadecanoate

Figure 11: The mass spectrum analysis and structure of phenol, 2,4-bis(1,1-dimethyleneyl)

PART 2

Figure 1. Seeds were germinated in petri dishes on filter paper. The values shown are the means of germination percentage determined at different concentration of NaCl for replicates with 25 seeds per treatment of *S. portulacastrum*. The data are the mean ± SD of 3 replicates
PART 3

Figure 1. Examples of plant-microbe interactions in the rhizosphere. Plant roots release exudates containing sugars, organic acids, and amino acids that may attract microbes. In exchange, they protect the plant against pathogens releasing antimicrobial compounds; or increase nutrient uptake. On the other hand, these carbon-containing compounds can also attract pathogens. They can compete for nutrients, infect the plant, and affect the rhizosphere microbial community (Vivian et al., 2013).

Figure 2. Salinity of green house (S1) and wild (S2) sample S2

Figure 3. pH exhibited in greenhouse (S1) and wild (S2)

Figure 4. Heavy metal concentration in the greenhouse (S1) and wild (S2) samples in that Ca concentration is more in wild rather than greenhouse and very low concentration was Cu.

Figure 5. a. 1% Agarose gel shows the presence of eDNA isolated: Lane1-1 kb Marker, Lane 2- eDNA isolated from greenhouse (S1), Lane 3- eDNA isolated from wild (S2) and Lane 4- Control.
Figure 5. b. 1% Agarose gel showing Purified eDNA band: Lane 1- Marker Lane 2- greenhouse (S1) purified eDNA, Lane 3- wild (S2) purified eDNA, Lane 4- Control.

Figure 6. The total aligned sequence length of greenhouse (S1) and wild (S2)

Figure 7. The total aligned sequence length on Sequence Length on OTUs References of greenhouse (S1) and wild (S2)

Figure 8. The total sequence quality of greenhouse (S1) and wild (S2)

Figure 9. The total sequence quality of greenhouse (S1) and wild (S2) on basis of OTUs

Figure 10. The total quality of aligned sequences of greenhouse (S1) and wild (S2)

Figure 11. The total quality of aligned sequences of greenhouse (S1) and wild (S2) on the OTUs References

Figure 12. The total number of aligned identically similar sequences of greenhouse (S1) and wild (S2)

Figure 13. The total number of aligned identically similar sequences of greenhouse (S1) and wild (S2) on the OTUs References

Figure 14. Bacterial community profile in greenhouse (S1) 16S rRNA matching the silva classifier. Matching pie chart plotted in Krona. Phyla abundance was represented in percentage.

Figure 15. Bacterial community profile in wild (S2) 16S rRNA matching the silva classifier. Matching pie chart plotted in Krona. Phyla abundance was represented in percentage.

Figure 16. Bacterial taxonomic fingerprint of greenhouse (S1) and wild (S2) 16S rRNA matching the SILVA ngs classifier. Matching taxonomic fingerprint at Phylum Level of the samples abundance (S1 and S2) was represented in percentage of reads.

Figure 17. Family composition of rhizosphere soil Pryosequence of S1 library. There was 100% presented in phylum level because it’s not having any classes.

Figure 18. Family composition of rhizosphere soil Pryosequence of S2 library. There was 100% presented in phylum level because it’s not having any classes.
Figure 19. Species presence and abundance in sample greenhouse (S1), each species name in the reference database is placed in circles with ordered phylogenetic relatedness. Physical distances between nearest species in the plot indicate genetic distances of 16S rRNA genes between them. The circles indicate the boundaries of BLAST average similarities (inner most circle starting at 80 %, followed by 85, 90, 95 and 100 % identity to the database sequence).

Figure 20. Species presence and abundance of wild (S2), each species name in the reference database is placed in circles with ordered phylogenetic relatedness. Physical distances between nearest species in the plot indicate genetic distances of 16S rRNA genes between them. The circles indicate the boundaries of BLAST average similarities (inner most circle starting at 80 %, followed by 85, 90, 95 and 100 % identity to the database sequence).

Figure 21. (a-j). VITCOMIC web based classification of sequence which shows shift in abundance percentage of different genera. There was five different VITCOMIC clade regions calculated for most abundant percentage of the genus

Figure 22. Rarefaction analysis for greenhouse (S1) and wild (S2) rhizosphere soil. Rarefaction curves representing the richness of the Pyrosequencing read with distance values. The vertical axis shows the number of OTUs that would be expected to be found after sampling the number of sequences shown on the horizontal axis. Rarefaction is shown for OTUs with differences that do not exceed 3%.

Part 4

Figure 1. Basic Components of a Mass Spectrometer

Figure 2 Effect of abiotic stress on TWC (%) in the leaf of *S. portulacastrum* on 72hrs after treatment. The data are the mean ± SD of 3 replicates

Figure 12. Spectrum of trypsin digested peptide after separation through Nano LC-MS: in that high peak spectra used for MALDI analysis.

Figure 4. Effect of abiotic stress treatment on Na+, K+ Cu,Cd, and ZN concentrations in the leaves of *S. portulacastrum*
Figure 5. Effect of abiotic stress on chlorophyll „a‟, chlorophyll „b‟ and total chlorophyll (mg g-1 fr. wt.) of Sesuvium portulacastrum on 72 hr after treatment.

Figure 6. Effect of abiotic stress on Malondialdehyde (MDA) activity (µmol g-1 FW) in the leaf of Sesuvium portulacastrum on 72 hrs after treatment. The data are the mean ± SD of 3 replicates

Figure 7. Effect of abiotic stress on proline activity (µmol g-1 FW) in the leaf of Sesuvium portulacastrum on 72 hrs after treatment. The data are the mean ± SD of 3 replicates

Figure 8. Effect of abiotic stress on Catalase (CAT) activity (Units g-1 FW) in the leaf of Sesuvium portulacastrum on 72 hrs after treatment. The data are the mean ± SD of 3 replicates

Figure 9. Effect of abiotic stress on Peroxidase (POD) activity (Units min-1 mg-1) in the leaf of Sesuvium portulacastrum on 72 hrs after treatment. The data are the mean ± SD of 3 replicates

Figure 10 Effect of abiotic stress on Superoxide dismutase (SOD) activity (Units mg-1 protein) in the leaf of Sesuvium portulacastrum on 72 hrs after treatment. The data are the mean ± SD of 3 replicates

Figure 11: Graphical representation of total protein content isolated through BPP protocol from leaf tissues of S. portulacastrum under different abiotic stress treatment

Figure 12. Effect of stress treatment on protein levels in stems of S. portulacastrum. CBB G-250 stained 10 % SDS-PAGE gel showed differently expressed proteins after treatment with different stress; lane 1 to 9: different abiotic stress treatment (dark, Drought, heat, cold, NaCl, Zn, Cu, Cd and control) and lane 10: protein marker.

Figure 13. Spectrum of trypsin digested peptide after separation through Nano LC-MS: in that high peak spectra used for MALDI analysis.

Figure 14: Identification of proteins from S. portulacastrum via MALDI TOF TOF/MS. The protein Spot 1 was excised and digested with trypsin and then
collected peptides were analyzed using a Bruker MALDI/TOF/ mass spectrometer. The annotated PMF spectral peaks showed the intensities of different peptide. Database searching with Mascot software against NCBInr database identified as Ribulose bisphosphate carboxylase large chain

Part 5

Figure 1.a. Plant acclimatized greenhouse condition for 1 month

Figure 1.b. Plant acclimatized in ½ MS media in culture room for 1 month

Figure 2. A. Green house condition B. Hydroponic conditions

Figure 3. (A and B): Graphical representation of total protein content isolated through BPP protocol from different tissues of *S. portulacastrum* under different NaCl treatment

Figure 4. : Effect of salt treatment on protein levels in leaves of *S.portulacastrum*. CBB G-250 stained 10 % SDS-PAGE gel showed differently expressed proteins after treatment with different concentration of NaCl.; lane 1: protein marker; lane 2: wild plant (*S. portulacastrum*); lane 3: control plant grown in distilled water in garden soil; lane 4: plant treated with distilled water in shore soil; lane 5 to 8: Salt treatment (50mM, 150mM, 250mM, 350mM).

Figure 5. Effect of salt treatment on protein expression in roots of *S. portulacastrum*. CBB G-250 stained 10 % SDS-PAGE gel showed differently expressed proteins after treatment with different concentration of NaCl; lane 1: protein marker; lane 2: wild plant; lane 3: control plant (distilled water + normal soil); lane 4: plants treated with distilled water in shore soil; lane 5-7: salt treatment (50mM, 150mM & 250mM).

Figure 6. Effect of salt treatment on protein levels in stems of *S. portulacastrum*. CBB G-250 stained 10 % SDS-PAGE gel showed differently expressed proteins after treatment with different concentration of NaCl; lane 1: protein marker; lane 2: wild plant; lane 3: control plant (distilled water + normal soil); lane 4: plants treated with distilled water in shore soil; lane 5-7: salt treatment (50mM,150mM & 250mM).
Figure 7: Effect of salt treatment on protein levels in leaves of *S. portulacastrum*. CBB G-250 stained 10 % SDS-PAGE gel showed differently expressed proteins after treatment with different concentration of NaCl. lane M: protein marker; lane 1-7: 300mM salt treatment at different time intervals (4hr - 72hr); lane 8 - 10: direct salt treatment (300mM NaCl) for 4hr to 8 hr; lane C10: control plant grown in ½ MS media.

Figure 8: Effect of salt treatment on protein levels in roots of *S. portulacastrum*. CBB G-250 stained 10 % SDS-PAGE gel showed differently expressed proteins after treatment with different concentration of NaCl. lane M: protein marker; lane 1-7: 300mM salt treatment at different time intervals (4hr - 72hr); lane 8 - 10: direct salt treatment (300mM NaCl) for 4hr to 8 hr; lane C10: control plant grown in ½ MS media.

Figure 9: Effect of salt treatment on protein levels in Stems of *S. portulacastrum*. CBB G-250 stained 10 % SDS-PAGE gel showed differently expressed proteins after treatment with different concentration of NaCl. lane M: protein marker; lane 1-7: 300mM salt treatment at different time intervals (4hr - 72hr); lane 8 - 10: direct salt treatment (300mM NaCl) for 4hr to 8 hr; lane C10: control plant grown in ½ MS media.

Figure 10. Effect of salt treatment on protein levels in leaves of *S. portulacastrum*. CBB G-250 stained 10 % SDS-PAGE gel showed differently expressed proteins after treatment with different concentration of NaCl; lane M: protein marker; lane C1: control plant grown in ½ MS media; lane C2: control plant grown in vermiculated soil; lane 1, 3, 5: 0.5 and 1M NaCl treatment at different time point (3hr-9hr)

Figure 11. Time dependent changes in leaf protein levels of *S. portulacastrum* under salt stress conditions. The values shown are the means of (± S.D.) of triplicate *S. portulacastrum* plants treated with 0.5M and 1M NaCl.

Figure 12. Time dependent changes in the protein profile of leaves of *S. portulacastrum* in 10% SDS-PAGE. lane M: protein marker; lane C1: control plant grown in ½ MS media; lane C2: control plant grown in vermiculated soil; lane 1, 3, 5: 0.5 M treatment at different time point (3hr, 6hr, 9hr) and lane 2, 4, 6: 1M NaCl treatment at different time point (3hr, 6hr, 9hr).
Figure 13. 2-DE of leaf protein profile of *S. portulacastrum* in 3-10IPG strip (A) Control plant grown in 1/2 MS media and (B) Plant treated with 300mM NaCl and proteins from leaves were extracted and separated by 2-DE. Duplicates were performed for each sample.

Figure 14. A representative CBB stained 2D gel of the *S. portulacastrum* leaf proteome. Differentially expressed protein spots were numerically marked and the number of expressed proteins. The arrows indicate the protein spots subjected for MS identification.

Figure 15: Identification of proteins from *S. portulacastrum* via MALDI TOF/MS. The protein Spot 1 was excised and digested with trypsin and then collected peptides were analysed using a Bruker MALDI/TOF/ mass spectrometer. The annotated PMF spectral peaks showed the intensities of different peptide. Database searching with Mascot software against NCBI nr database identified as a Hsp70, which corresponds to that in Table 2.

Figure 16. Comparison of deduced amino acid sequence with the homologues of hsp70 obtained from MALDI/TOF/TOF Mascot software for *S. portulacastrum*

Figure 17: Identification of proteins from *S. portulacastrum* via MALDI TOF/MS. The protein spots 2 was excised and digested with trypsin and then collected peptides were analyzed using a Bruker MALDI/TOF/ mass spectrometer. The annotated PMF spectral peaks showed the intensities of different peptide. Database searching with Mascot software against NCBI nr database identified as a T complex protein, which corresponds to that in Table 2.

Statistical tool:

Methods used –SPSS 20.00 version