

CONTENTS

List of Tables i-v
List of Figures vi-x
Abstract xi-xiii

Chapter 1- Introduction 1-15
1.1 Enzymes 1
1.1.1 α-Amylase 2
1.1.2 Sources of α-Amylase 4
1.2 Agro residuals as substrates for amylase production 5
1.2.1 Banana Peel 5
1.2.2 Wheat Bran 6
1.2.3 Rice Bran 7
1.2.4 Corn pith 8
1.3 Bacillus Subtilis 9
1.4 Optimization of fermentation process parameters 9
1.5 Scaled up studies in bioreactors 12
1.6 Objective 15

Chapter 2- Design of Experiments and Optimization Techniques 16-32
2.1 Statistical Design of Experiments 16
2.1.1 Advantages 20
2.2 Response Surface Methodology 21
2.3 Experimental Designs for Fitting Response Surfaces 22
2.3.1 Central Composite Design (CCD) 23
2.3.2 The Box-Behnken Design 24
2.4 Artificial Neural Networks 24
2.4.1 Models of Neuron 25
2.4.2 Network architectures 26
2.5 Network Learning Categories 27
2.5.1 Unsupervised learning
2.5.2 Supervised Learning
2.6 Back propagation algorithms
2.6.1 Training
2.6.1.1 Levenberg-Marquardt (trainlm)
2.7 Optimization using gblsolve function

Chapter 3- Review of Literature
3.1 Enzymes
3.1.1 Amylase: Importance and Production
3.2 Effective utilization of agricultural residues for producing α-amylase
3.3 Statistical Methods: Design of experiments and Optimization
3.4 Fractional factorial experiment
3.5 Use of response surface methodology with Plackett–Burman or central composite design in optimization of α-amylase production.
3.6 Taguchi’s methodology with Orthogonal array (OA) experimentation
3.7 Artificial neural network analysis (ANN) model.
3.8 Scale up production and automated control in laboratory bioreactors

Chapter 4- Materials and Methods
4.1 Materials Required
4.1.1 Instruments used.
4.1.2 Chemicals Used
4.1.3 Reagent Used
4.1.4 Software Used
4.1.5 Cultures
4.2 Culture Maintenance Medium
4.2.1 Preparation of inoculum
4.2.2 Substrate preparation
4.3 Submerged Fermentation
4.3.1 Preliminary studies for deciding the levels of various
parameters.

4.3.1 Effect of inoculum age and incubation time
4.3.1.2 Effect of inoculum level
4.3.1.3 Effect of Temperature
4.3.1.4 Effect of pH
4.3.1.5 Effect of agro products concentration
4.3.1.6 Effect of peptone concentration

4.4 Analysis and optimization of alpha amylase production using Taguchi (Orthogonal Array experimental design) technique
4.4.1 Factor Effects
4.4.2 Prediction of Optimum Production

4.5 Analysis and optimization of alpha amylase production using Response Surface Methodology (RSM), second order polynomial equation with Central Composite Design of experiments (CCD)

4.6 Modeling and optimization using Artificial Neural Networks (ANN) with gblSolve version of DIRECT algorithm

4.7 Optimization of various parameters for alpha amylase production in Lab fermentor

4.8 Amylase Assay
4.8.1 Determination of α- amylase activity

Chapter 5- Results and Discussion
5.1 Preliminary studies for deciding the levels of various parameters
5.1.1 Effect of Inoculum Age and Incubation Time
5.1.2 Effect of inoculum level
5.1.3 Effect of Temperature
5.1.4 Effect of pH
5.1.5 Effect of agro products concentration
5.1.6 Effect of peptone concentration

5.2 Analysis and optimization of α- amylase production using Taguchi technique (Orthogonal Array experimental design)
5.2.1 Taguchi S/N analysis for banana peel (Statistica 7.0)
5.2.2 Taguchi S/N analysis for wheat bran (Statistica 7.0)
5.2.3 Taguchi S/N analysis for rice bran (Statistica 7.0)
5.2.4 Taguchi S/N analysis for wheat corn pith (Statistica 7.0)

5.3 Analysis and optimization of α-amylase production using Response Surface Methodology (RSM), second order polynomial equation with Central Composite Design of experiments (CCD)

5.3.1 Response surface plots obtained using CCD design for banana peel, wheat bran, rice bran and corn pith

5.4 Modeling and optimization using Artificial Neural Networks (ANN) with gblSolve version of DIRECT algorithm

5.5 Optimization of various parameters for α-amylase production in lab scale bioreactor

Chapter 6- Conclusion
Annexures
References