CONCLUSIONS
CONCLUSIONS

This work is an attempt to bring out the utility of the modern technology like Remote Sensing and GIS, in analysing the problems that are faced in the development of 'Rural' areas. The micro level analysis in the ground water evaluation and its bearing on prioritisation is stressed in all chapters and at each level.

The basic conclusions are as detailed below:

- The geological analysis is one of the paramount aspects in uplifting the downtrodden villages.
- Geomorphology of any terrain plays no lesser role in the upgradation of the village economics.
- Hydrogeology and Hydrogeomorphology are equally important in the micro level evaluation.
- Watershed study is yet another unique aspect that plays a great role in the said topic.
- Watershed helps in planing the upgradation of villages and the watersheds can be developed.
- Soil is the one that supports the agricultural activity. It also controls the pattern and type of crops.
- Soil development is again controlled by the lithology. Hence, the role of geology has been stressed to a greater extent.
- Soil erosion is yet another aspect that draws attention of all the earth scientists.
- Soil erosion can cause severe damage to the soil, there by bring down the fertility of the soil that again has say in the village upgradation.
- Slope is generally neglected. It not only controls the movement of surface water, it effects the infiltration causing the zones of ground water potential.
The urbanisation as seen in many places is also causing an imbalance in the agricultural activity of a village. This factor also affects the socio-economic condition of villages.

This study has indicated the control of lithology in the crop pattern. The crops grown are mostly supported by rain or the crops are all dry crops. This points to the paucity in the ground water zones in the villages.

Water harvesting structures like check dams and percolation tanks are the most typical methods for the recharge of the bore wells.

Most of the bore wells drilled do not have any support for recharge. This aspect is causality.

In the area under study, there are very limited percolation tanks. Check dams also should be constructed.

The boreholes in many places are so closely spaced. Spacing of boreholes should be given due consideration.

The depth to water table has again indicated that lithology plays a great role.

In the carbonate rocks, the depth to water table is less compared to the wells that are in the shale country. This is for the obvious reasons.

The net village area has been calculated and found that many villages have considerable area for the development.

Many villages in the mandal have good percentage of irrigation utilization, though the crops are of dry type.

Prioritization has been calculated considering most of the said aspects. In addition wasteland, forest area are also taken into account.

The prioritization maps give an idea about the development activities to be taken up.

This exercise has lead to the following aspects that are to be given priority.
Suggestions / Remedial measures:

- Sustenance of bore wells by planning recharge structures should be given top priority.
- Single crop can be planned in fallow lands.
- Counseling for farmers in respect of ground water conditions and crop pattern should be taken up.
- Forest plantation can be taken up that helps in the improvement of socio-economic condition of the villagers.
- It is suggested that there should be enough spacing between the bore wells, i.e., approximately 300 meters between the wells.
- Preventive measures for soil erosion have to be given priority.
- Watersheds have to be developed.
- This entire study leads to the final goal, i.e., Removal rural poverty. Upgradation of Agricultural scene. Development of downtrodden villages by bridging the gap between underdeveloped and developed villages and finally to take care of the socio-economic conditions of the rural sectors.

All the above said tasks can be achieved in a novel way by the use of modern techniques like Remote Sensing and GIS.