Chapter 6

Conclusion

This chapter summarizes and highlights the conclusions drawn from the present study. The research work accomplished in this thesis has focused on the design and development of different multiresonator circuits for spectral signature based chipless tag. Spectral signature based RFID tags are designed using standard planar resonator structures, antennas, filters, space filling curves, and fractals. In this thesis, a comprehensive study on the design, simulation, and testing of different multiresonating circuit for spectral signature based chipless tag are presented. The three novel multi resonator designs are presented in this thesis. They are Coupled bunch hair pin resonator, Open stub multi resonator placed inside transmission line and Shorted slot ground loop multiresonators. The advantage of the tag is its compact size and higher Q of resonators compared to other existing chipless RFID tag designs.

Coupled hair pin resonators have higher coupling compared to conventional line resonator and also it exhibits higher Q. In order to reduce the size of multiresonating circuit all resonators are combined together to form a bunch hairpin resonator. One arm of all hair pin resonators are common which provides same coupling strength. But each resonator works independently that helps data encoding.

Open stub resonators are quarter wave resonator which are placed inside the bifurcated transmission line that rejoins its far end to form a multiresonator with moderate Q. For the first time the idea of bifurcated line used for multiresonating applications. Open stub resonators are suitable option for spectral signature tags.
The subsequent work is concentric circular rings printed on the bifurcated transmission line which connected to ground through via. The loop resonators on bifurcated transmission line operate at half wavelength. To reduce overall size of tag, antenna size should be reduced and incorporated into the tag.

The main objectives of research work is to design and develop compact, narrow bandwidth multiresonators for chipless tag. Even though Preradovic et al presented a lot of published papers in spectral signature chipless tag, they all used only spiral resonators for band notch applications. Spiral resonator based multiresonators can be replaced easily by using the proposed multiresonators such as bunch hair pin resonator, shorted loop multiresonator on slotted ground, open stub multiresonator inside the modified line.

Based on the conclusions and limitations of the present work, prospects for future works are identified as below. The overall size of tag depends mainly on the size of antennas connected with it. So new reading technique to be proposed in future.

So far, the RFID tag has been designed to operate in predefined alignment situations and applications since the polarization of the antennas is crucial for successful reading. Further studies could focus on developing planar circularly polarized tag antennas which would remove the present stringent alignment requirements.
DINESH R.
Senior Research scholar, Centre for Research in Electromagnetics and Antennas,
Department of Electronics, Cochin University of Science and Technology, Poopara, Idukki,
+91-9961866746
dineshr@cusat.ac.in
dinsh84@gmail.com

Education
Cochin University of Science and Technology, Cochin Pursuing Ph.D., Microwave Engineering
Cochin University of Science and Technology, Cochin M.Sc. Electronic science, April 2008
Mahatma Gandhi University, Kottayam B.Sc. Electronics, January 2005

Research Experience
Research Scholar Centre for Research in Electromagnetics and Antennas, Department of Electronics, Cochin University of Science and Technology, Cochin October 2009- till the date

- 6-year Research experience in Microwave field
- Broad theoretical knowledge, strong analytical skills and measurement experience in Electromagnetics and Antennas.
- Research experience in planar antennas, Ultra wide band antennas and Composite Right Left Handed Transmission line based Metamaterial antennas.
- Design experience in S-band Dielectric Diplexer for Vikram Sarabhai Space Centre (VSSC), Trivandrum
- Research experience in chipless RFID tags
- Experience in Microwave material characterization measurements
- Experience in Microwave design tools such as Ansoft HFSS and CST Microwave Studio
- Experienced in using HP 8510C Vector Network Analyzer, PNA E8362B Network Analyzer, R&S ZVB 20, Anritsu Spectrum Analyzer, Anechoic chamber measurements etc.

Research Interests
- Antennas, Filters, Radar, Millimeter Wave Technology, Electromagnetics, Developing new techniques for material characterization measurements, Metamaterials and MEMS.

List of Publications

Conferences

References

Dr. P.Mohanan
Professor
Department of Electronics,
Cochin University of Science and Technology,
Cochin-682022,
drmohan@gmail.com
+91-9447325765
Fax: +91-484-2575800

Dr.K.Vasudevan
Professor
Department of Electronics,
Cochin University of Science and Technology,
Cochin-682022,
vasudevankdr@gmail.com
+91-9447357328
Fax:+91-484-2575800

Dr. Praveen.N
Associate Professor
Department of Electronics,
NSS College, Rajakumary,
Idukki-685619
praveen.nanniyatt@gmail.com
+91-9447608163
Index

A
Active RFID tag 5
Anti-collision 20

B
Bidirectional IDT 19

C
Capacitively tuned dipoles 24
Chip RFID and chipless RFID tag 7
Chipless RFID Tag 113
Coupled Bunch Hairpin Resonator 73

D
Data Encoding technique 78
Delay line 21, 135
Different Loop Resonators 120
Disc-Loaded Monopole Antennas 80
Dual polarization 31

F
Field trials 88
Frequency domain 28, 38, 39

H
Hairpin resonator 66

I
Inter digital transducer 18

M
Magneto Inductive Delay line 22
Matrix Pencil Method 29
Modified Transmission Line 96

O
Open Stub Multiresonator 98
Open Stub Resonator 96
Orthogonal Frequency coding 20

P
Passive RFID tag 4
Piano curve 25
Piezo-electric material 18

R
Reflective delay lines 18
RFID tag 1

S
Semi-lumped resonators 52
Semi-passive RFID tag 6
Singularity Expansion Method 29
Spectral signature 24, 25, 27, 30, 36, 37, 39
Spectral signature Coding Technique 110
Spiral multiresonators 25
Stepped Impedance Resonator 47
Substrate integrated tag 35
Surface acoustic wave 16, 20
Surface current distribution 71
Square ring multiresonator

T
Time Domain Reflectometry 16
Time domain reflectometry 16

U
Unidirectional IDT 19