CONTENTS

1. **Introduction** 1

 Objectives of the study 6

2. **Review of literature** 7

 2.1 Steps in biofilm formation 8

 2.1.1 Conditioning of a surface 8

 2.1.2 Adhesion of cells 8

 2.1.3 Formation of microcolony 8

 2.1.4 Biofilm formation 9

 2.1.4.1 Effect of interspecies microbial interactions 10

 2.1.4.2 Molecular basis of Biofilm formation 11

 2.1.5 Detachment and dispersal of biofilms 15

 2.2 Regulation of biofilm by genetic and environmental factors 15

 2.3 Roles of Biofilm in microbial community 16

 2.4 Biofilm resistance to antibiotics 17

 2.5 Biofilms and pathogenesis 19

 2.5.1 Biofilms, human body and device associated infections 21

 2.5.2 Impact of Biofilms on deterioration of water quality 23

 2.5.3 Biofilms and food industry 26

 2.5.3.1 Produce industry 30

 2.5.3.2 Dairy industry 31

 2.5.3.3 Fish processing industry 31

 2.5.3.4 Poultry industry 31

 2.5.3.5 Meat industry 31

 2.5.3.6 Ready-to-eat (RTE) industry 31

 2.6 Methods to study biofilms 32

 2.7 Control and removal strategies 35

 2.7.1 Cleaning and disinfection 36

 2.7.2 Clean-in-Place (CIP) 36

 2.8 Biocontrol of biofilms using different bioactive compounds 41

 2.8.1 Pyocyanin 45

 2.8.1.1 Antibacterial activity of pyocyanin 47

 2.8.1.2 Anti-fungal activity of pyocyanin 48
3. **Screening and characterization of food pathogens with biofilm forming capability from various food samples**

3.1 Introduction

3.2 Materials and Methods

3.2.1 Screening for bacterial food borne pathogens from different food items

3.2.2 Qualitative analysis for the biofilm producers by congo red assay

3.2.3 Quantification of biofilm forming pathogens by microtiter plate assay

3.2.4 Molecular characterization of biofilm producers

3.2.5 Antibiotic sensitivity tests

3.2.6 Enzyme profiling of the biofilm producers

3.2.6.1 Amylases activity

3.2.6.2 Proteases activity

3.2.6.3 Lipases activity

3.2.6.4 Cellulases activity

3.3 Results

3.3.1 Screening for bacterial food borne pathogens from different food items

3.3.2 Qualitative analysis for the biofilm producers by congo red assay

3.3.3 Quantification of biofilm forming pathogens by microtiter plate assay

3.3.4 Molecular characterization of biofilm producers using 16S rDNA sequence analysis

3.3.5 Antibiogram of the strong biofilm producers

3.3.6 Exoenzyme profile of biofilm producers
4. Isolation, purification and partial characterization of pyocyanin and rhamnolipids from *Pseudomonas aeruginosa* BTRY1

4.1 Introduction 86

4.2 Materials and Methods 87

4.2.1 Isolation of pyocyanin from *Pseudomonas aeruginosa* strain BTRY1 87

4.2.2 Quantification of the pyocyanin from the strain *Pseudomonas aeruginosa* (BTRY1) 87

4.2.3 Determination of the UV-Vis absorption spectrum of the pyocyanin from *P. aeruginosa* BTRY1 88

4.2.4 Isolation and extraction of rhamnolipids from *P. aeruginosa* BTRY1 88

4.2.5 Qualitative analysis of rhamnolipids from *P. aeruginosa* BTRY1 89

4.2.5.1 CTAB Methylene blue agar test 89

4.2.5.2 Drop collapsing test 89

4.2.6 Quantitative analysis of rhamnolipids from *P. aeruginosa* BTRY1 89

4.2.7 Characterization of pyocyanin and rhamnolipids from *P. aeruginosa* (BTRY1) by FTIR and Proton NMR spectroscopy 90

4.2.8 Free radical scavenging activity of pyocyanin and rhamnolipids from *P. aeruginosa* BTRY1 90

4.2.9 Cytotoxicity assays of pyocyanin and rhamnolipids from *P. aeruginosa* strain BTRY1 91

4.2.9.1 Assay of hemolytic activity 91

4.2.9.2 Determination of in vitro cytotoxic effect of pyocyanin and rhamnolipids on cultured L929 cell lines 91

4.3 Results 92

4.3.1 Isolation of pyocyanin from the strain *P. aeruginosa* (BTRY1) 92

4.3.2 Quantification of the pyocyanin from the strain *Pseudomonas aeruginosa* (BTRY1) 93

4.3.3 Determination of the UV-Vis absorption spectrum of the
pyocyanin from *P. aeruginosa* (BTRY1) 93

4.3.4 Isolation and extraction of rhamnolipids from *P. aeruginosa* (BTRY1) 93

4.3.5 Qualitative analysis of rhamnolipids from *P. aeruginosa* (BTRY1) 94

4.3.5.1 CTAB Methylene blue agar test 94

4.3.5.2 Drop collapsing test 94

4.3.6 Quantitative analysis of rhamnolipids from *P. aeruginosa* (BTRY1) 95

4.3.7 Characterization of pyocyanin and rhamnolipids from *P. aeruginosa* (BTRY1) by FTIR and Proton NMR spectroscopy 95

4.3.8 Free radical scavenging activity of pyocyanin and rhamnolipids from *P. aeruginosa* (BTRY1) 98

4.3.9 Cytotoxicity assays of pyocyanin and rhamnolipids from *P. aeruginosa* strain BTRY1 100

4.3.9.1 Assay of hemolytic activity 100

4.3.9.2 Determination of in vitro cytotoxic effect of pyocyanin and rhamnolipids on cultured L929 cell lines 101

4.4 Discussion 103

5. **Biocontrol of biofilm by different biomolecules – pyocyanin, rhamnolipids, melanin and bacteriocin**

5.1 Introduction 107

5.2 Materials and Methods 108

5.2.1 Antibiofilm activity of pyocyanin, rhamnolipids, melanin and bacteriocin BL8 108

5.2.2 Determination of biofilm inhibitory concentration (BIC) of pyocyanin, rhamnolipids, melanin and bacteriocin BL8 for antibiofilm activity 109

5.2.3 Antibiofilm activity of different combinations of bioactive compounds 110

5.2.4 Effect of the four bioactive compounds on Extracellular polymeric substances (EPS) production by the strong biofilm producers 110

5.2.5 Scanning Electron Microscopy (SEM) 111
5.2.6 Confocal Laser Scanning Microscopy (CLSM) 112
5.2.7 Application studies of the bioactive compounds in the biocontrol of biofilms 112
5.2.7.1 Effect of pyocyanin and rhamnolipids on biofilm formation of different test pathogens from the culture collection of the laboratory 112
5.2.7.2 Effect of bioactive compounds singly and in combination on multispecies biofilm formation 112
5.2.7.3 The application of the bioactive compounds in the preservation of common foods available in market 113
5.3 Results 114
5.3.1 Antibiofilm activity of pyocyanin, rhamnolipids, melanin and bacteriocin BL8 114
5.3.2 Determination of biofilm inhibitory concentration (BIC) of pyocyanin, rhamnolipids, melanin and bacteriocin BL8 for antibiofilm activity 117
5.3.3 Antibiofilm activity of different combinations of bioactive compounds 120
5.3.4 Effect of the four bioactive compounds on Extracellular polymeric substances (EPS) production by the strong biofilm producers 127
5.3.5 Scanning Electron Microscopy (SEM) 128
5.3.6 Confocal Laser Scanning Microscopy (CLSM) 132
5.3.7 Application studies of the bioactive compounds in the biocontrol of biofilms 138
5.3.7.1 Effect of pyocyanin and rhamnolipids on biofilm formation of different test pathogens from the culture collection of the laboratory 138
5.3.7.2 Effect of bioactive compounds singly and in combination on multispecies biofilm formation 140
5.3.7.3 The application of the bioactive compounds in the preservation of common foods available in market 142
5.4 Discussion 144
6. Isolation, purification and characterization of bacteriophages

6.1 Introduction 148
6.2 Materials and methods 148
6.2.1 Bacteriophage isolation 148
6.2.1.1 Sample preparation 149
6.2.1.1(a) Direct method 149
6.2.1.1(b) Enrichment method 150
6.2.1.2 Double agar overlay method 150
6.2.1.3 Tetrazolium staining 150
6.2.2 Phage purification 151
6.2.3 Large scale production of phage lysate 151
6.2.4 Phage concentration 151
6.2.5 Maintenance and storage of phages 152
6.2.6 Characterization of phages 152
6.2.6.1 Morphological analysis by Transmission Electron Microscopy (TEM) 152
6.2.6.2 Determination of optimal multiplicity of infection 153
6.2.6.3 Phage adsorption 153
6.2.6.4 One step growth curve 154
6.2.6.5 Influence of physical and chemical parameters on phage viability 154
6.2.6.5.1 Effect of temperature on phage viability 155
6.2.6.5.2 Effect of NaCl on phage viability 155
6.2.6.5.3 Effect of pH on phage viability 155
6.2.6.5.4 Effect of sugars on phage viability 156
6.2.6.6 Influence of physical and chemical parameters on phage adsorption 156
6.2.6.6.1 Effect of temperature on phage adsorption 156
6.2.6.6.2 Effect of NaCl on phage adsorption 157
6.2.6.6.3 Effect of pH on phage adsorption 157
6.2.6.6.4 Effect of calcium ions on phage adsorption and propagation 157
6.2.6.7 Effect of optimized physicochemical parameters on phage propagation 158
6.2.6.8 Propagation of phage under nutrient depleted states of the host cell

6.2.6.8.1 Preparation of log- and stationary-phase, starved- and nutrient- depleted cultures

6.2.6.8.2 Statistical analysis

6.2.6.9 Bacteriophage genome analysis

6.2.6.9.1 Phage DNA isolation

6.2.6.9.2 Restriction analysis

6.3 Results

6.3.1 Bacteriophage isolation

6.3.2 Phage concentration

6.3.3 Maintenance and storage of phages

6.3.4 Characterization of phages

6.3.4.1 Morphological analysis by Transmission Electron Microscopy (TEM)

6.3.4.2 Determination of optimal multiplicity of infection

6.3.4.3 Phage adsorption

6.3.4.4 One step growth curve

6.3.4.5 Influence of physical and chemical parameters on phage viability

6.3.4.5.1 Effect of temperature on phage viability

6.3.4.5.2 Effect of NaCl on phage viability

6.3.4.5.3 Effect of pH on phage viability

6.3.4.5.4 Effect of sugars on phage viability

6.3.4.6 Influence of physical and chemical parameters on phage adsorption

6.3.4.6.1 Effect of temperature on phage adsorption

6.3.4.6.2 Effect of NaCl on phage adsorption

6.3.4.6.3 Effect of pH on phage adsorption

6.3.4.6.4 Effect of calcium ions on phage adsorption and propagation

6.3.4.7 Cumulative effect of optimized parameters on propagation of ΦBAP-1 and ΦPAP-1

6.3.4.8 Propagation of phage under nutrient depleted states
6.3.4.9 Bacteriophage genome analysis
6.3.4.9.1 Phage DNA isolation
6.3.4.9.2 Restriction analysis
6.4 Discussion

7. Biofilm mitigation using bacteriophages
7.1 Introduction
7.2 Materials and methods
7.2.1 Host Range Studies
7.2.2 Anti biofilm activity of ΦBAP-1 and ΦPAP-1
7.2.3 Phage structural protein analysis
7.2.3.1 Non Reductive Sodium Dodecyl Sulphate Polyacrylamide Gel Electrophoresis (SDS-PAGE)
7.2.3.2 Sample Preparation
7.2.3.3 Silver staining
7.2.3.4 Anti biofilm activity of proteins extracted from ΦBAP-1 and ΦPAP-1
7.3 Results
7.3.1 Host Range Studies
7.3.2 Anti biofilm activity of ΦBAP-1 and ΦPAP-1
7.3.3 Phage structural protein analysis
7.3.4 Anti biofilm activity of proteins extracted from ΦBAP-1 and ΦPAP-1
7.4 Discussion

8. Summary and conclusion
9. References
10. Appendix
11. Annexure
12. List of Publications/Awards/Honours
INTRODUCTION

Microorganisms are often viewed as simple life forms when compared with “higher” organisms. The study of microbial development however, has shown that microorganisms are capable of complex differentiation and behaviors; mostly working as communities rather than as individuals. Biofilms are defined simply and broadly as communities of microorganisms attached to a surface.

The discovery of biofilms was credited to Anton van Leeuwenhoek who discovered microbial attachment on his own tooth surface (Kokare et al., 2009). Biofilms as they occur in nature consist primarily of viable and nonviable microorganisms embedded in polyanionic extracellular polymeric substances anchored to a surface (Wimpenny, 2000). Extracellular polymeric substances (EPS) may contain polysaccharides, proteins, phospholipids, teichoic and nucleic acids, and other polymeric substances hydrated to 85 to 95% water (Sutherland, 1999). EPS provide protection to the biofilm inhabitants by concentrating nutrients, preventing access of biocides, sequestering metals and toxins, and preventing desiccation (Carpentier and Cerf, 1993). The ability of many bacteria to adhere to surfaces and to form biofilms has major implications in a diversity of industries including the food industry, where biofilms create a persistent source of contamination. Food industry biofilms in addition may also have high food residue and mineral content originating from product and process water. These constituents also provide protection to microorganisms held within the biofilm (Chmielewski and Frank, 2003).

Biofilms may also be considered as ‘The city of microbes’. There are several steps that must be taken to optimize lives in a city. The first is to choose the city in which to live, select the neighborhood in the city that best suits our needs, and finally make our home amongst the homes of many others. Occasionally, when life in the city sours, we leave. The same steps occur in the formation of a bacterial biofilm. First, the bacterium approaches the surface so closely that motility is slowed. The bacterium may then form a transient