Contents

Chapter 1 Introduction

1.1 Polymer 2
1.2 Rheology 3
1.3 Electro and Magneto rheology 4
1.4 Ferrofluids 6
1.5 Magnetorheological fluids 7
1.6 Magnetorheological elastomers 8
1.7 Fundamentals of Magnetism 9
 1.7.1 Classes of Magnetic Materials 9
 1.7.2 Magnetic Anisotropy 14
1.8 Magnetostriction 16
1.9 Linear Viscoelastic theory 19
1.10 Polymer Matrix 21
1.11 Fillers 22
1.12 Motivation 22
References 24

Chapter 2 Experimental techniques

2.1 Synthesis Methods 28
 2.1.1 High Energy Ball Milling (HEBM) 28
 2.1.2 Preparation of Magneto Rheological Elastomers (Rods and Sheets) 30
 2.1.3 Brabender Plasticorder 31
 2.1.4 Two roll mill 32
 2.1.5 Rubber Processing Analyser (RPA) 32
 2.1.6 Fabrication of rods and sheets 35
2.2 Characterization Methods 37
 2.2.1 Structural Analysis: X-Ray Diffractometer 37
 2.2.2 Transmission Electron Microscope (TEM) 38
 2.2.3 Scanning Electron Microscope (SEM) 40
 2.2.4 Magnetic Measurements-Vibrating Sample Magnetometry (VSM) 41
Chapter 3 Enhanced microactuation with magnetic field curing of magnetorheological elastomers based on iron–natural rubber

3.1 Introduction 59
3.2 Experimental 61
3.3 Results and Discussion 63
 3.3.1 Structural studies 63
 3.3.2 Magnetization studies 65
 3.3.3 Surface morphological studies 68
 3.3.4 Microactuation studies 70
3.4 Conclusion 75

Chapter 4 Microactuation studies on magneto rheological elastomers based on carbonyl iron and natural rubber

4.1 Introduction 77
4.2 Experimental 78
4.3 Results and Discussions 79
 4.3.1 Structural Characterization 79
 4.3.2 Magnetization studies 81
 4.3.3 Morphological studies 86
 4.3.4 Microactuation Studies 88
4.4 Conclusion 90

References 90
Chapter 5 The mechanical properties of magneto rheological elastomer rods and sheets based on Natural Rubber and Iron

5.1 Introduction 93
5.2 Experimental 94
5.3 Results and Discussions 95
 5.3.1 Structural Studies 95
 5.3.2 Magnetisation studies 97
 5.3.3 Surface morphological studies 101
 5.3.4 Study on Mechanical Properties of MR Elastomers using Instron Mechanical Analyser and modified DMA 103
 5.3.5 Effect of magnetic field on mechanical properties of MRE sheets based on natural rubber with 5 hr ball milled iron 106
 5.3.6 Mechanical properties of MRE sheets based on natural rubber with 5hr ball milled iron - shear mode 108
5.4 Conclusion 110
References 111

Chapter 6 Mechanical properties of magneto rheological elastomer rods and sheets based on carbonyl iron and natural rubber

6.1 Introduction 113
6.2 Experimental 114
6.3 Results and Discussions 114
 6.3.1 Structural Studies 114
 6.3.2 Magnetisation studies 115
 6.3.3 Surface morphological studies 119
 6.3.4 Study on Mechanical properties of MR Elastomer Rods and Sheets using Instron Mechanical Analyser (rods) and modified DMA (sheets) 121
 6.3.5 Mechanical properties of MRE Sheets based on Natural Rubber and Carbonyl Iron — modified DMA 124
 6.3.6 Mechanical properties of MRE sheets based on NR and Carbonyl Iron - Shear Studies- DMA 126
6.4 Conclusion 128
References 129
Chapter 7 Magneto dielectric properties of magneto rheological elastomer sheets based on carbonyl iron 131

7.1 Introduction 131
7.2 Experimental 131
7.2 Results and Discussion 132
7.3 Conclusion 144
7.4 References 144

Chapter 8 Conclusion and future prospects 147