LIST OF TABLES

<table>
<thead>
<tr>
<th>Table No.</th>
<th>Title</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>ISO Designation of cutting tool</td>
<td>29</td>
</tr>
<tr>
<td>3.1</td>
<td>Specifications of Lathe machine</td>
<td>49</td>
</tr>
<tr>
<td>3.2</td>
<td>Chemical composition of AISI 4340</td>
<td>50</td>
</tr>
<tr>
<td>3.3</td>
<td>Composition of selected CVD and PVD Coated Tools</td>
<td>52</td>
</tr>
<tr>
<td>3.4</td>
<td>Effective tool angles</td>
<td>54</td>
</tr>
<tr>
<td>3.5</td>
<td>Specification of the Surface Roughness Measuring Instrument</td>
<td>56</td>
</tr>
<tr>
<td>3.6</td>
<td>Specifications of Lathe Tool Dynamometer</td>
<td>57</td>
</tr>
<tr>
<td>3.7</td>
<td>Selected Orthogonal Array</td>
<td>63</td>
</tr>
<tr>
<td>3.8</td>
<td>Different trials of experiments</td>
<td>63</td>
</tr>
<tr>
<td>3.9</td>
<td>Different trials and combination of experiments</td>
<td>64</td>
</tr>
<tr>
<td>3.10</td>
<td>The parametric values for calculation of S/N Ratio</td>
<td>65</td>
</tr>
<tr>
<td>3.11</td>
<td>The parametric values sequence for calculation of S/N ratios</td>
<td>66</td>
</tr>
<tr>
<td>3.12</td>
<td>L₀ Orthogonal array</td>
<td>67</td>
</tr>
<tr>
<td>3.13</td>
<td>Orthogonal Array Selector</td>
<td>69</td>
</tr>
<tr>
<td>3.14</td>
<td>Process parameters and their levels</td>
<td>70</td>
</tr>
<tr>
<td>3.15</td>
<td>Different operating parameters and their levels used for AISI 4340</td>
<td>71</td>
</tr>
<tr>
<td>3.16</td>
<td>Orthogonal Array for Operating parameters and their levels for experiments L₂₇</td>
<td>72</td>
</tr>
<tr>
<td>3.17</td>
<td>Orthogonal Array for Operating parameters and their levels for experiments L₃₆</td>
<td>73</td>
</tr>
<tr>
<td>4.1</td>
<td>Experimental data for three parameters, corresponding Ra, MRR and PC on CVD tool</td>
<td>83</td>
</tr>
<tr>
<td>4.2</td>
<td>Data for training set and test set readings (CVD)</td>
<td>84</td>
</tr>
<tr>
<td>4.3</td>
<td>Experimental data and for three parameters, corresponding Ra, MRR and PC on PVD tool</td>
<td>85</td>
</tr>
</tbody>
</table>

CHAPTER 2

CHAPTER 3

CHAPTER 4
<table>
<thead>
<tr>
<th>Table No.</th>
<th>Title</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.4</td>
<td>Data for training set and test set readings (PVD)</td>
<td>86</td>
</tr>
<tr>
<td>4.5</td>
<td>Shows the experimental data for four parameters</td>
<td>87</td>
</tr>
<tr>
<td>4.6</td>
<td>Data for training set and test set readings for four parameters</td>
<td>88</td>
</tr>
</tbody>
</table>

CHAPTER 5

<p>| 5.1 | Experimentally data on AISI 4340 with PVD tool | 99 |
| 5.2 | Experimental data on AISI 4340 with CVD tool | 100 |
| 5.3 | Response Table for Signal to Noise Ratios for PVD tool [Ra] | 103 |
| 5.4 | Response Table for means for PVD tool [Ra] | 103 |
| 5.5 | Response Table for Signal to Noise Ratio for PVD tool [MRR] | 103 |
| 5.6 | Response Table for Means on PVD tool [MRR] | 104 |
| 5.7 | Response Table for Signal to Noise Ratio for PVD tool [P.C] | 104 |
| 5.8 | Response Table for Means on PVD tool [P.C] | 104 |
| 5.9 | Optimized table obtained on PVD tool | 109 |
| 5.10 | ANOVA for the response surface roughness (Ra) on PVD tool | 111 |
| 5.11 | ANOVA for the response Material removal rate (MRR) on PVD tool | 112 |
| 5.12 | ANOVA for the response Power Consumed on PVD tool | 113 |
| 5.13 | Response Table for Signal to Noise Ratios on CVD tool [Ra] | 115 |
| 5.14 | Response Table for means for CVD tool [Ra] | 115 |
| 5.15 | Response Table for Signal to Noise Ratio on CVD tool [MRR] | 116 |
| 5.16 | Response Table for Means on CVD tool [MRR] | 116 |
| 5.17 | Response Table for Signal to Noise Ratio on CVD tool [P.C] | 116 |
| 5.18 | Response Table for Means on CVD tool [P.C] | 117 |</p>
<table>
<thead>
<tr>
<th>Table No.</th>
<th>Title</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.19</td>
<td>Optimized table obtained on CVD tool</td>
<td>122</td>
</tr>
<tr>
<td>5.20</td>
<td>ANOVA for the response surface roughness (Ra) on CVD tool</td>
<td>123</td>
</tr>
<tr>
<td>5.21</td>
<td>ANOVA for the response Material removal rate (MRR) on CVD tool</td>
<td>124</td>
</tr>
<tr>
<td>5.22</td>
<td>ANOVA for the response Power Consumed on CVD tool</td>
<td>125</td>
</tr>
<tr>
<td>5.23</td>
<td>Test conditions at different hidden neurons (PVD Ra)</td>
<td>127</td>
</tr>
<tr>
<td>5.24</td>
<td>Test conditions at different hidden neurons (PVD MRR)</td>
<td>128</td>
</tr>
<tr>
<td>5.25</td>
<td>Test conditions at different hidden neurons (PVD PC)</td>
<td>129</td>
</tr>
<tr>
<td>5.26</td>
<td>Test conditions at different hidden neurons (CVD Ra)</td>
<td>130</td>
</tr>
<tr>
<td>5.27</td>
<td>Test conditions at different hidden neurons (CVD MRR)</td>
<td>131</td>
</tr>
<tr>
<td>5.28</td>
<td>Test conditions at different hidden neurons (CVD PC)</td>
<td>132</td>
</tr>
<tr>
<td>5.29</td>
<td>Experimental surface roughness (Ra) and Regression predicted Surface roughness (Ra) values</td>
<td>134</td>
</tr>
<tr>
<td>5.30</td>
<td>Experimental Material removal rate (MRR) and Regression predicted Material removal rate (MRR) values</td>
<td>136</td>
</tr>
<tr>
<td>5.31</td>
<td>Experimental Power consumed values and Regression predicted Power consumed values</td>
<td>137</td>
</tr>
<tr>
<td>5.32</td>
<td>Optimized cutting condition levels for Ra, MRR and PC on PVD tool</td>
<td>139</td>
</tr>
<tr>
<td>5.33</td>
<td>Optimal cutting conditions and response values for different weighting factors (PVD)</td>
<td>139</td>
</tr>
<tr>
<td>5.34</td>
<td>GA verses ANN Surface roughness (Ra) values</td>
<td>140</td>
</tr>
<tr>
<td>5.35</td>
<td>GA verses ANN Material removal rate (MRR) values</td>
<td>141</td>
</tr>
<tr>
<td>5.36</td>
<td>GA verses ANN Power Consumed (PC) values</td>
<td>142</td>
</tr>
<tr>
<td>5.37</td>
<td>Experimental surface roughness (Ra) and Regression predicted Surface roughness (Ra) values</td>
<td>143</td>
</tr>
<tr>
<td>5.38</td>
<td>Experimental Material removal rate (MRR) and Regression predicted Material removal rate (MRR) values</td>
<td>144</td>
</tr>
<tr>
<td>5.39</td>
<td>Experimental Power consumed values and Regression predicted Power consumed values</td>
<td>146</td>
</tr>
<tr>
<td>5.40</td>
<td>Optimized cutting condition levels for Ra, MRR and PC for CVD tool</td>
<td>148</td>
</tr>
<tr>
<td>5.41</td>
<td>Optimal cutting conditions and response values for</td>
<td>148</td>
</tr>
<tr>
<td>Table No.</td>
<td>Title</td>
<td>Page No.</td>
</tr>
<tr>
<td>----------</td>
<td>--</td>
<td>----------</td>
</tr>
<tr>
<td>5.42</td>
<td>GA versus ANN Surface roughness (Ra) values</td>
<td>149</td>
</tr>
<tr>
<td>5.43</td>
<td>GA versus ANN Material removal rate (MRR) values</td>
<td>150</td>
</tr>
<tr>
<td>5.44</td>
<td>GA versus ANN Power consumed (PC) values</td>
<td>151</td>
</tr>
<tr>
<td>5.45</td>
<td>Shows the Experimental values for four parameters</td>
<td>152</td>
</tr>
<tr>
<td>5.46</td>
<td>Response Table for Signal to Noise Ratios for [Ra]</td>
<td>153</td>
</tr>
<tr>
<td>5.47</td>
<td>Response Table for means for [Ra]</td>
<td>154</td>
</tr>
<tr>
<td>5.48</td>
<td>Response Table for Signal to Noise Ratios for [MRR]</td>
<td>154</td>
</tr>
<tr>
<td>5.49</td>
<td>Response Table for means for [MRR]</td>
<td>154</td>
</tr>
<tr>
<td>5.50</td>
<td>Response Table for Signal to Noise Ratios for [PC]</td>
<td>155</td>
</tr>
<tr>
<td>5.51</td>
<td>Response Table for means for [P.C]</td>
<td>155</td>
</tr>
<tr>
<td>5.52</td>
<td>Optimized table obtained for AISI 4340 for four factors</td>
<td>160</td>
</tr>
<tr>
<td>5.53</td>
<td>Experimental surface roughness (Ra) and Regression predicted Surface roughness (Ra) values</td>
<td>162</td>
</tr>
<tr>
<td>5.54</td>
<td>Experimental Material removal rate (MRR) and Regression predicted Material removal rate (MRR) values</td>
<td>164</td>
</tr>
<tr>
<td>5.55</td>
<td>Experimental Power consumed values and Regression predicted Power consumed values</td>
<td>166</td>
</tr>
<tr>
<td>5.56</td>
<td>Test conditions at different hidden neurons (4F, Ra)</td>
<td>169</td>
</tr>
<tr>
<td>5.57</td>
<td>Test conditions at different hidden neurons (4F, MRR)</td>
<td>170</td>
</tr>
<tr>
<td>5.58</td>
<td>Test conditions at different hidden neurons (4F, PC)</td>
<td>172</td>
</tr>
<tr>
<td>5.59</td>
<td>Optimized cutting condition levels for Ra, MRR and PC for four factors tool</td>
<td>174</td>
</tr>
<tr>
<td>5.60</td>
<td>Optimal cutting conditions and response values for different weighting factors (4F)</td>
<td>174</td>
</tr>
<tr>
<td>5.61</td>
<td>GA versus ANN Surface roughness (Ra) values</td>
<td>175</td>
</tr>
<tr>
<td>5.62</td>
<td>GA versus ANN Material removal rate (MRR) values</td>
<td>176</td>
</tr>
<tr>
<td>5.63</td>
<td>GA versus ANN Power consumed (PC) values</td>
<td>177</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Fig. No.</th>
<th>Title</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Input / output relationships in Manufacturing System</td>
<td>3</td>
</tr>
<tr>
<td>1.2</td>
<td>Input / output relationships in metal cutting</td>
<td>4</td>
</tr>
<tr>
<td>1.3</td>
<td>A typical surface highly magnified</td>
<td>10</td>
</tr>
<tr>
<td>1.4</td>
<td>Macro geometrical errors</td>
<td>10</td>
</tr>
<tr>
<td>1.5</td>
<td>Fishbone diagram with factors influencing on surface roughness</td>
<td>12</td>
</tr>
<tr>
<td>1.6</td>
<td>Illustration of surface roughness</td>
<td>13</td>
</tr>
<tr>
<td>1.7</td>
<td>Surface roughness vs. cutting length for different speeds</td>
<td>15</td>
</tr>
<tr>
<td>1.8</td>
<td>Surface roughness vs. cutting speed</td>
<td>15</td>
</tr>
</tbody>
</table>

CHAPTER 2

<table>
<thead>
<tr>
<th>Fig. No.</th>
<th>Title</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Shapes of inserts</td>
<td>29</td>
</tr>
<tr>
<td>2.2</td>
<td>Carbide tipped turning tools</td>
<td>30</td>
</tr>
<tr>
<td>2.3</td>
<td>Temperature dependence of micro hardness</td>
<td>35</td>
</tr>
<tr>
<td>2.4</td>
<td>Oxidation rate of hard coatings</td>
<td>35</td>
</tr>
</tbody>
</table>

CHAPTER 3

<table>
<thead>
<tr>
<th>Fig. No.</th>
<th>Title</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Organization of Present work</td>
<td>48</td>
</tr>
<tr>
<td>3.2</td>
<td>Lathe Machine (with force indicator) TURNMASTER 350</td>
<td>48</td>
</tr>
<tr>
<td>3.3</td>
<td>Experimental Set-up on Lathe Machine</td>
<td>49</td>
</tr>
<tr>
<td>3.4</td>
<td>Raw Material –AISI 4340 Steel : Ø 50 mm x 500 mm Length</td>
<td>51</td>
</tr>
<tr>
<td>3.5(a)</td>
<td>Coated Cutting Tool Insert</td>
<td>52</td>
</tr>
<tr>
<td>3.5(b)</td>
<td>Coated tools before using</td>
<td>53</td>
</tr>
<tr>
<td>Fig. No.</td>
<td>Title</td>
<td>Page No.</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>----------</td>
</tr>
<tr>
<td>3.5(c)</td>
<td>The coated tools with the edges before after Turning. TiCN Cutting Tool is of golden colour and ZrN Black.</td>
<td>53</td>
</tr>
<tr>
<td>3.5(d)</td>
<td>Tool holder with Insert</td>
<td>54</td>
</tr>
<tr>
<td>3.5(e)</td>
<td>The cutting tool insert and the Assembly</td>
<td>54</td>
</tr>
<tr>
<td>3.6</td>
<td>Schematic illustration of the basic turning operation showing depth of cut (d), feed (f) and spindle rotation (N in rev/min).</td>
<td>55</td>
</tr>
<tr>
<td>3.7</td>
<td>Surface Roughness tester (Mitutoyo-SJ-201 P stylus type)</td>
<td>56</td>
</tr>
<tr>
<td>3.8</td>
<td>Lathe Tool Dynamometer</td>
<td>57</td>
</tr>
<tr>
<td>3.9</td>
<td>Force indicator (strain gauge)</td>
<td>58</td>
</tr>
<tr>
<td>3.10</td>
<td>Steps in Taguchi Method</td>
<td>61</td>
</tr>
</tbody>
</table>

CHAPTER 4

4.1	Structure of a neural cell in the human brain	76
4.2	Mathematical model of ANN	77
4.3	Schematic diagram of ANN for Ra and MRR and PC	80
4.4	ANN training performance	82
4.5	Flow chart of Genetic algorithm	92

CHAPTER 5

<p>| 5.1 | Plots of main effects for means for Surface roughness (Ra) on PVD tool | 105 |
| 5.2 | S/N ratio for Surface roughness (Ra) on PVD tool | 105 |
| 5.3 | Interaction data means for Surface roughness (Ra) on PVD tool | 106 |
| 5.4 | Plots of main effects for means for Material removal rate on PVD tool | 106 |
| 5.5 | S/N ratio for Material removal rate on PVD tool | 107 |</p>
<table>
<thead>
<tr>
<th>Fig. No.</th>
<th>Title</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.6</td>
<td>Interaction data means for Material removal rate on PVD tool</td>
<td>107</td>
</tr>
<tr>
<td>5.7</td>
<td>Plots of main effects for means for Power Consumed on PVD tool</td>
<td>108</td>
</tr>
<tr>
<td>5.8</td>
<td>S/N ratio for Power Consumed on PVD tool</td>
<td>108</td>
</tr>
<tr>
<td>5.9</td>
<td>Interaction data means for Power Consumed on PVD tool</td>
<td>109</td>
</tr>
<tr>
<td>5.10</td>
<td>Plots of main effects for means for Surface roughness (Ra) on CVD tool</td>
<td>117</td>
</tr>
<tr>
<td>5.11</td>
<td>S/N ratio for Surface roughness (Ra) on CVD tool</td>
<td>118</td>
</tr>
<tr>
<td>5.12</td>
<td>Interaction data means for Surface roughness (Ra) on CVD tool</td>
<td>118</td>
</tr>
<tr>
<td>5.13</td>
<td>Plots of main effects for means for Material removal rate on CVD tool</td>
<td>119</td>
</tr>
<tr>
<td>5.14</td>
<td>S/N ratio for Material removal rate on CVD tool</td>
<td>119</td>
</tr>
<tr>
<td>5.15</td>
<td>Interaction data means for Material removal rate on CVD tool</td>
<td>120</td>
</tr>
<tr>
<td>5.16</td>
<td>Plots of main effects for means for Power Consumed on CVD tool</td>
<td>120</td>
</tr>
<tr>
<td>5.17</td>
<td>S/N ratio for Power Consumed on CVD tool</td>
<td>121</td>
</tr>
<tr>
<td>5.18</td>
<td>Interaction data means for Power Consumed on CVD tool</td>
<td>121</td>
</tr>
<tr>
<td>5.19</td>
<td>Experimentally measured versus ANN computed Ra for PVD</td>
<td>127</td>
</tr>
<tr>
<td>5.20</td>
<td>Experimentally measured versus ANN computed MRR for PVD</td>
<td>128</td>
</tr>
<tr>
<td>5.21</td>
<td>Experimentally measured versus ANN computed PC for PVD</td>
<td>129</td>
</tr>
<tr>
<td>5.22</td>
<td>Experimentally measured versus ANN computed Ra for CVD</td>
<td>130</td>
</tr>
<tr>
<td>Fig. No.</td>
<td>Title</td>
<td>Page No.</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>----------</td>
</tr>
<tr>
<td>5.23</td>
<td>Experimentally measured versus ANN computed MRR for CVD</td>
<td>131</td>
</tr>
<tr>
<td>5.24</td>
<td>Experimentally measured versus ANN computed PC for CVD</td>
<td>132</td>
</tr>
<tr>
<td>5.25</td>
<td>Experimental surface roughness (Ra) and Regression predicted Surface roughness (Ra) values</td>
<td>135</td>
</tr>
<tr>
<td>5.26</td>
<td>Experimental Material removal rate (MRR) and Regression predicted Material removal rate (MRR) values</td>
<td>137</td>
</tr>
<tr>
<td>5.27</td>
<td>Experimental Power consumed values and Regression predicted Power consumed values</td>
<td>138</td>
</tr>
<tr>
<td>5.28</td>
<td>GA verses ANN Surface roughness (Ra) values</td>
<td>140</td>
</tr>
<tr>
<td>5.29</td>
<td>GA verses ANN Material removal rate (MRR) values</td>
<td>141</td>
</tr>
<tr>
<td>5.30</td>
<td>GA verses ANN Power Consumed (PC) values</td>
<td>142</td>
</tr>
<tr>
<td>5.31</td>
<td>Experimental surface roughness (Ra) and Regression predicted Surface roughness (Ra) values</td>
<td>144</td>
</tr>
<tr>
<td>5.32</td>
<td>Experimental Material removal rate (MRR) and Regression predicted Material removal rate (MRR) values</td>
<td>145</td>
</tr>
<tr>
<td>5.33</td>
<td>Experimental Power consumed values and Regression predicted Power consumed values</td>
<td>147</td>
</tr>
<tr>
<td>5.34</td>
<td>ANN versus GA surface roughness values (µm) CVD</td>
<td>149</td>
</tr>
<tr>
<td>5.35</td>
<td>ANN versus GA Material removal rate (mm³/min) CVD</td>
<td>150</td>
</tr>
<tr>
<td>5.36</td>
<td>ANN versus GA Power Consumed (kw) CVD</td>
<td>151</td>
</tr>
<tr>
<td>5.37</td>
<td>Main effects for means of surface roughness for four factors</td>
<td>156</td>
</tr>
<tr>
<td>5.38</td>
<td>S/N ratio for surface roughness on 4 factors</td>
<td>156</td>
</tr>
<tr>
<td>5.39</td>
<td>Interaction data means for surface roughness on four factors</td>
<td>157</td>
</tr>
<tr>
<td>5.40</td>
<td>Main effects for means of material removal rate for four factors</td>
<td>157</td>
</tr>
<tr>
<td>5.41</td>
<td>S/N ratio for material removal rate on four factors</td>
<td>158</td>
</tr>
<tr>
<td>5.42</td>
<td>Interaction data means for material removal rate on four factors</td>
<td>158</td>
</tr>
<tr>
<td>5.43</td>
<td>Main effects for means of power consumed for</td>
<td>159</td>
</tr>
<tr>
<td>Fig. No.</td>
<td>Title</td>
<td>Page No.</td>
</tr>
<tr>
<td>----------</td>
<td>--</td>
<td>----------</td>
</tr>
<tr>
<td>5.44</td>
<td>S/N ratio for power consumed on four factors</td>
<td>159</td>
</tr>
<tr>
<td>5.45</td>
<td>Interaction data means for power consumed on four factors</td>
<td>160</td>
</tr>
<tr>
<td>5.46</td>
<td>Experimental surface roughness (Ra) and Regression predicted Surface roughness (Ra) values</td>
<td>163</td>
</tr>
<tr>
<td>5.47</td>
<td>Experimental Material removal rate (MRR) and Regression predicted Material removal rate (MRR) values</td>
<td>165</td>
</tr>
<tr>
<td>5.48</td>
<td>Experimental Power consumed values and Regression predicted Power consumed values</td>
<td>167</td>
</tr>
<tr>
<td>5.49</td>
<td>Experimentally measured versus ANN computed Ra for four factors</td>
<td>170</td>
</tr>
<tr>
<td>5.50</td>
<td>Experimentally measured versus ANN computed MRR for four factors</td>
<td>171</td>
</tr>
<tr>
<td>5.51</td>
<td>Experimentally measured versus ANN computed PC for PVD</td>
<td>173</td>
</tr>
<tr>
<td>5.52</td>
<td>Comparison between GA and ANN measured surface roughness values</td>
<td>175</td>
</tr>
<tr>
<td>5.53</td>
<td>Comparison between GA and ANN measured values of MRR</td>
<td>176</td>
</tr>
<tr>
<td>5.54</td>
<td>Comparison between GA and ANN measured values for Power Consumed (PC)</td>
<td>177</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>AA</td>
<td>Arithmetical average</td>
<td></td>
</tr>
<tr>
<td>AISI</td>
<td>American Iron and Steel Institute</td>
<td></td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>Aluminium oxide</td>
<td></td>
</tr>
<tr>
<td>ANN</td>
<td>Artificial Neural Networks</td>
<td></td>
</tr>
<tr>
<td>ANOVA</td>
<td>Analysis of Variance</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>Carbides</td>
<td></td>
</tr>
<tr>
<td>CBN</td>
<td>Cubic Boron Nitride</td>
<td></td>
</tr>
<tr>
<td>CLA</td>
<td>Central Line Average</td>
<td></td>
</tr>
<tr>
<td>CrC</td>
<td>Chromium Carbide</td>
<td></td>
</tr>
<tr>
<td>CrN</td>
<td>Chromium Nitride</td>
<td></td>
</tr>
<tr>
<td>CVD</td>
<td>Chemical Vapour Deposit</td>
<td></td>
</tr>
<tr>
<td>Doc or (d)</td>
<td>Depth of cut in mm</td>
<td></td>
</tr>
<tr>
<td>DOE</td>
<td>Design of Experiments</td>
<td></td>
</tr>
<tr>
<td>(f)</td>
<td>Feed mm/rev</td>
<td></td>
</tr>
<tr>
<td>GA</td>
<td>Genetic Algorithm</td>
<td></td>
</tr>
<tr>
<td>Lm</td>
<td>Mean line</td>
<td></td>
</tr>
<tr>
<td>Lu</td>
<td>Upper surface line</td>
<td></td>
</tr>
<tr>
<td>MR</td>
<td>Material Removal in Kgs</td>
<td></td>
</tr>
<tr>
<td>MRR</td>
<td>Material removal rate Kg/m³</td>
<td></td>
</tr>
<tr>
<td>PC</td>
<td>Power Consumed in Watts</td>
<td></td>
</tr>
<tr>
<td>PVD</td>
<td>Physical Vapour Deposit</td>
<td></td>
</tr>
<tr>
<td>Ra</td>
<td>Surface Roughness in (\mu m)</td>
<td></td>
</tr>
<tr>
<td>Rp</td>
<td>Leveling Depth or Depth of smoothness</td>
<td></td>
</tr>
</tbody>
</table>
RSM - Response Surface Methodology
S - Speed in rpm
Sr - Strength factor
S/N or SN ratio - Signal to Noise ratio
Si₂O - Silicon dioxide
Si₃N₄ - Silicon Nitride
TiC - Titanium Carbide
TiCN - Titanium nitride
TiN - Titanium nitride
TiO₂ - Titanium oxide
v - Velocity in m/min
W - Weights (Randomly Selected Weights)
W₂C - Tungsten carbide
WC - Tungsten carbide