LIST OF PUBLICATIONS
FAST DISPERSIBLE TABLET OF
PAROXETINE HYDROCHLORIDE: TASTE MASKING
AND ADMINISTRATION IN DEPRESSED PATIENTS.

PAPER ACCEPTED IN
"LATIN AMERICAN JOURNAL OF PHARMACY."

ABSTRACT

The bitter taste of Paroxetine hydrochloride was masked by complexation with beta cyclodextrin. Complexation of paroxetine hydrochloride with beta cyclodextrin was characterized by differential scanning calorimeter and x-ray powder diffraction. The taste masked complex was directly compressed into tablets using povidone Cl as a super-disintegrant along with other excipients which aid in further improvement of taste. The prepared tablets containing the taste masked complex were evaluated for taste by both In vitro release profile and through panel testing. The taste masked Tablets were administered to actual patients by mixing with juices to study weather the patients identifies the presence of medicine in the juices. The results of this study were satisfactory.
UV SPECTROPHOTOMETRIC METHOD DEVELOPMENT AND VALIDATION FOR DETERMINATION OF PAROXETINE HYDROCHLORIDE IN PHARMACEUTICAL DOSAGE FORM.

PAPER ACCEPTED IN "INTERNATIONAL JOURNAL OF PHARMACY AND PHARMACEUTICAL SCIENCES."

ABSTRACT

A simple and reproducible method was developed for the assay of paroxetine in tablets. The excipients in the commercial tablet preparation did not interfere with the assay. Beer's law is obeyed in the range 2.0 - 10.0 μg.mL⁻¹ at max 294 nm. The molar absorptivity was calculated. Six triplicate analyses of solutions containing six different concentrations of the examined drug were carried out and gave a mean correlation coefficient 0.999. The proposed method was applied to the determination of the examined drug in market tablet and the results demonstrated that the method is equally accurate, precise and reproducible as the official methods.
PREPARATION, INVITRO AND BIOCLINICAL EVALUATIONS OF CONTROLED RELEASE FAST DISPERSEIBLE TABLETS OF PAROXETINE HYDROCHLORIDE.

PAPER COMMUNICATED TO "JOURNAL OF MICRO ENCAPSULATION."

ABSTRACT

The objective of the present study was to develop controlled release dispersible tablets of Paroxetine hydrochloride by formulating it into multiunit particulate system. The pellets of Paroxetine hydrochloride were prepared by extrusion spheronisation. This pellets were than coated with a mixture of Eudragit L 100 and Hydroxy propyl methyl cellulose phthalate followed by coating with Opadry (Hydroxypropyl methyl cellulose 15 CPS). The prepared pellets were subjected to dissolution studies based on which pellets with 70:30 ratio of Eudragit S 100 to HPMCP was found ideal. These pellets with different ratios of weight gains were than formulated into fast dispersible tablets by using directly compressible mannitol and povidone cl. The tablets were subjected to physicochemical, in vitro drug release. These tablets were than subjected to bioequivalent testing in comparison with the market tablets. The pharmacokinetic study in healthy human volunteers indicated that prepared tablet produced a controlled drug release of drug similar as that of marketed product with almost identical pharmacokinetic parameters.
DEVELOPMENT OF TASTE MASKED FAST DISPERSIBLE FILMS OF PAROXETINE HYDROCHLORIDE.

PAPER COMMUNICATED TO “JOURNAL OF AMERICAN ASSOCIATION OF PHARMACEUTICAL SCIENCES.”

ABSTRACT

The bitter taste of Paroxetine hydrochloride was masked by complexation with beta cyclodextrin. Complexation of paroxetine hydrochloride with beta cyclodextrin was characterized by differential scanning calorimeter and x-ray powder diffraction. The taste masked complex was formulated into mouth dispersing films by use of polymers. To study all the possible combinations of polymers of all factors at all levels, a three factor, two level full factorial designs was constructed and conducted in a fully randomized order. Three independent factors, the concentration of pullulan (X₁), xanthan gum (X₂) and carrageenan (X₃) were set at two different levels. This design was selected as it provides sufficient degrees of freedom to resolve the main effects as well as the factor interactions. Stepwise regression analysis was used to find out the control factors that significantly affect response variables.
DEVELOPMENT AND EVALUATION OF SOLID LIPID NANO PARTICLES OF PAROXETINE HYDROCHLORIDE.

PAPER COMMUNICATED TO "JOURNAL OF MICROENCAPSULATION."

ABSTRACT

Solid lipid nanoparticles of Paroxetine hydrochloride were prepared with three different triglycerides such as tristyristin, tripalmitin, and tristearin by hot homogenization followed by ultrasonication method. The formulation optimization were carried out by carrying out optimization of concentration of lipids, surfactant and Co surfactant. The prepared SLN were evaluated by determination of particle size and zeta potential. Entrapment efficiency and assay was also determined. The SLN were finally characterized by differential scanning calorimeter and x-ray powder diffraction.