List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1.1</td>
<td>Structure of Butylated hydroxytoluene</td>
<td>10</td>
</tr>
<tr>
<td>Figure 1.2</td>
<td>Structure of dibenzyl disulphide</td>
<td>11</td>
</tr>
<tr>
<td>Figure 1.3</td>
<td>Structure of BTA and Irgamet 39</td>
<td>13</td>
</tr>
<tr>
<td>Figure 1.4</td>
<td>Action of sulphur compounds on copper</td>
<td>14</td>
</tr>
<tr>
<td>Figure 1.5</td>
<td>Formation of copper sulphide</td>
<td>14</td>
</tr>
<tr>
<td>Figure 1.6</td>
<td>Action of passivators on copper</td>
<td>14</td>
</tr>
<tr>
<td>Figure 3.1</td>
<td>Laboratory model winding used for thermal ageing</td>
<td>67</td>
</tr>
<tr>
<td>Figure 2.2</td>
<td>Photograph of laboratory model winding used for thermal ageing</td>
<td>67</td>
</tr>
<tr>
<td>Figure 3.3</td>
<td>Details of thermal ageing glass</td>
<td>68</td>
</tr>
<tr>
<td>Figure 3.4</td>
<td>Outside (A) and inside (B) view of hot air circulating ovens showing arrangement of ageing bottles inside</td>
<td>68</td>
</tr>
<tr>
<td>Figure 4.1</td>
<td>Degradation of DBDS due to thermal ageing of mineral oil at 100 °C in nitrogen</td>
<td>82</td>
</tr>
<tr>
<td>Figure 4.2</td>
<td>Degradation of DBDS due to thermal ageing of mineral oil at 120 °C in nitrogen</td>
<td>82</td>
</tr>
<tr>
<td>Figure 4.3</td>
<td>Degradation of DBDS due to thermal ageing of mineral oil at 130 °C in nitrogen</td>
<td>83</td>
</tr>
<tr>
<td>Figure 4.4</td>
<td>Degradation of 2MBT due to thermal ageing of mineral oil at 130 and 140 °C in nitrogen</td>
<td>86</td>
</tr>
<tr>
<td>Figure 4.5</td>
<td>Degradation of 10 and 20 ppm of 2MBT due to thermal ageing of mineral oil at 120 °C in nitrogen</td>
<td>87</td>
</tr>
<tr>
<td>Figure 4.6</td>
<td>Degradation of 2MBT and DBDS due to thermal ageing of mineral oil at 125 °C in air</td>
<td>88</td>
</tr>
<tr>
<td>Figure 4.7</td>
<td>Degradation of DBDS due to thermal ageing of mineral oil at 100 °C in nitrogen and air. Inset shows the variation of DBDS in air for the first 450 hours.</td>
<td>88</td>
</tr>
<tr>
<td>Figure 4.8</td>
<td>Degradation of 2MBT on thermal ageing of mineral oil at 130 °C in nitrogen and oxygen for starting concentration of 20 ppm</td>
<td>90</td>
</tr>
<tr>
<td>Figure 4.9</td>
<td>Degradation of DBDS in presence of Ir 39 due to thermal ageing of mineral oil at 140 °C in nitrogen</td>
<td>91</td>
</tr>
<tr>
<td>Figure 4.10</td>
<td>Degradation of DBDS in presence of Ir 39 due to thermal ageing of mineral oil at 150 °C in nitrogen</td>
<td>92</td>
</tr>
<tr>
<td>Figure 4.11</td>
<td>Degradation of DBDS in presence of BTA due to thermal ageing of mineral oil at 140 °C in nitrogen</td>
<td>93</td>
</tr>
<tr>
<td>Figure 4.12</td>
<td>Degradation of DBDS in presence of BTA due to thermal ageing of mineral oil at 150 °C in nitrogen</td>
<td>93</td>
</tr>
<tr>
<td>Figure 4.13</td>
<td>Degradation of 2MBT in presence of Ir 39 and BTA due to thermal ageing of mineral oil at 150 °C in nitrogen</td>
<td>95</td>
</tr>
<tr>
<td>Figure 4.14 (A)</td>
<td>Results of EDAX of copper in clean oil aged at 125 °C for 1080 hours in nitrogen</td>
<td>96</td>
</tr>
<tr>
<td>Figure 4.14 (B)</td>
<td>Results of EDAX of paper in clean oil aged at 125 °C for 1080 hours in nitrogen</td>
<td>96</td>
</tr>
<tr>
<td>Figure 4.15 (A)</td>
<td>Results of EDAX of copper in oil containing 50 ppm of DBDS aged at 125 °C for 1080 hours in nitrogen</td>
<td>97</td>
</tr>
</tbody>
</table>
Figure 4.15 (B) Results of EDAX of paper in oil containing 50 ppm of DBDS aged at 125 °C for 1080 hours in nitrogen

Figure 4.16 (A) Results of EDAX of copper in oil containing 100 ppm of DBDS aged at 125 °C for 1080 hours in nitrogen

Figure 4.16 (A) Results of EDAX of paper in oil containing 100 ppm of DBDS aged at 125 °C for 1080 hours in nitrogen

Figure 4.17 (A) Results of EDAX of copper in oil containing 100 ppm of DBDS aged at 125 °C for 1156 hours in air

Figure 4.17 (B) Results of EDAX of paper in oil containing 100 ppm of DBDS aged at 125 °C for 1156 hours in air

Figure 4.18 (A) Results of EDAX of copper in oil containing 10 ppm of 2MBT aged at 125 °C for 1392 hours in nitrogen

Figure 4.18 (B) Results of EDAX of paper in oil containing 10 ppm of 2MBT aged at 125 °C for 1392 hours in nitrogen

Figure 4.19 (A) Results of EDAX of copper in Nitro 10X oil aged at 130 °C for 768 hours in nitrogen

Figure 4.19 (B) Results of EDAX of paper layer immediate to copper in Nitro 10X oil aged at 130 °C for 768 hours in nitrogen

Figure 4.19 (C) Results of EDAX of reverse side of paper layer immediate to copper in Nitro 10X oil aged at 130 °C for 768 hours in nitrogen

Figure 5.1 Variation in concentration of DBDS with thermal ageing at 100 °C

Figure 5.2 Variation in concentration of DBDS with thermal ageing at 130 °C

Figure 5.3 Linear least square fits showing depletion of DBDS with time at 130 °C till 176 hours

Figure 5.4 Linear least square fits showing depletion of DBDS with time at 100°C from 873 to 1900 hours

Figure 5.5 Linear least square fits showing depletion of DBDS with time at 130°C from 436 to 700 hours

Figure 5.6 Linear least square fits showing depletion of DBDS with time at 100°C in air

Figure 5.7 Degradation of DBDS with time at 150°C in presence of passivators

Figure 5.8 Activation energy of degradation of DBDS in nitrogen in presence of copper

Figure 5.9 Activation energy of degradation of DBDS in nitrogen in presence of copper

Figure 6.1 Comparative variations in the concentrations of Ir 39 and DBDS at 140 °C showing the (1) depletion of Ir 39 when present alone (2) depletion of Ir 39 in presence of 100 ppm of DBDS (3) degradation of DBDS in presence of 100 ppm of Ir 39

Figure 6.2 Comparative variations in the concentrations of Ir 39 and DBDS at 150 °C showing the (1) depletion of Ir 39 when present alone (2) depletion of Ir 39 in presence of 100 ppm of DBDS (3) degradation of DBDS in presence of 100 ppm of Ir 39

Figure 6.3 Comparative variations in the concentrations of BTA and DBDS at 140 °C showing the (1) depletion of BTA when present alone (2) depletion of BTA in presence of 100 ppm of DBDS (3) degradation of DBDS in presence of 100 ppm of BTA
Figure 6.4 Comparative variations in the concentrations of BTA and DBDS at 150 °C showing the (1) depletion of BTA when present alone (2) depletion of BTA in presence of 100 ppm of DBDS (3) degradation of DBDS in presence of 100 ppm of BTA

Figure 6.5 Depletion of Ir 39 at 150 °C in nitrogen, in presence of 15 ppm of 2MBT and 100 ppm of DBDS

Figure 6.6 (A) Results of EDAX of copper in oil containing 100 ppm DBDS aged at 125 °C for 1080 hours in nitrogen

Figure 6.6 (B) Results of EDAX of paper in oil containing 100 ppm DBDS aged at 125 °C for 1080 hours in nitrogen

Figure 6.7 (A) EDAX of copper aged in oil containing 100 ppm DBDS and 100 ppm of Irgamet 39 aged for 616 hours at 140 °C in nitrogen

Figure 6.7 (B) EDAX of paper aged in oil containing 100 ppm DBDS and 100 ppm of Irgamet 39 aged for 616 hours at 140 °C in nitrogen

Figure 6.8 (A) EDAX of copper aged in oil containing 100 ppm DBDS and 100 ppm of BTA aged for 616 hours at 140 °C in nitrogen

Figure 6.8 (B) EDAX of paper aged in oil containing 100 ppm DBDS and 100 ppm of BTA aged for 616 hours at 140 °C in nitrogen

Figure 7.1 Flow chart of method of solvent extraction with additional features

Figure 7.2 Flow chart of experimental method to study properties of extracted mineral oil

Figure 7.3 Photograph showing color of oils: (i) before aging (ii) after aging for 384 hours with 193 ppm of DBDS, (iii) aged for 384 hours and extracted, (iv) extracted oil aged for 432 hours and (v) oil aged for 816 hours without extraction (in order from left to right)

Figure 7.4 Photographs of copper conductors and paper insulation. A) After initial ageing for 384 hours B) Aged for 432 hours after extraction C) Oil aged for 816 hours without extraction

Figure 7.5 (A) EDAX of copper aged in oil with 193 ppm of DBDS for 384 hours at 140°C (before extraction).

Figure 7.5 (B) EDAX of copper aged in oil with 193 ppm of DBDS for 384 hours at 140°C (before extraction).

Figure 7.6 (A) EDAX of copper aged in extracted oil with no added DBDS for 432 hours at 140 °C

Figure 7.6 (B) EDAX of paper aged in extracted oil with no added DBDS for 432 hours at 140 °C

Figure 7.7 (A) EDAX of copper aged in oil with 193 ppm of DBDS and aged for 816 hours at 140 °C (without extraction).

Figure 7.7 (B) EDAX of paper aged in oil with 193 ppm of DBDS and aged for 816 hours at 140 °C (without extraction).

Figure 7.8 FDS of clean paper oil insulation in pigtail configuration

Figure 7.9 Polarization current variation of clean paper oil insulation in pigtail configuration

Figure 7.10 FDS of paper oil insulation in transformer oil containing 193 ppm of DBDS aged for 384 hours at 140 °C

Figure 7.11 PDC of paper oil insulation aged in transformer oil containing 193 ppm of DBDS for 384 hours at 140 °C
Figure 7.12 FDS of pigtail sample aged in transformer oil for 432 hours at 140 °C after extraction
Figure 7.13 PDC of pigtail sample aged in transformer oil for 432 hours at 140 °C after extraction
Figure 8.1 TGA of DBDS
Figure 8.2 Thermogram of 2MBT
Figure 8.3 Thermogram of BTA
Figure 8.4 Differential thermogram of DBDS
Figure 8.5 Differential thermogram of 2MBT
Figure 8.6 Differential thermogram of BTA
Figure 8.7 UV-Visible spectra of transformer oil containing 10 ppm of MS aged in presence of pigtail sample for 976 hours at 100 °C in air
Figure 8.8 UV-Visible spectrum of transformer oil containing 20 ppm of MS aged in presence of pigtail sample for 976 hours at 100 °C in air
Figure 8.9 UV-Visible spectra of transformer oil containing 20 ppm of MS aged in presence of pigtail sample for 600 hours at 140 °C in air
Figure 8.10 UV-Visible spectra of transformer oil containing 50 ppm of DBDS aged in presence of pigtail sample for 1063 hours at 100 °C in nitrogen
Figure 8.11 UV-Visible spectra of transformer oil containing 300 ppm of DBDS aged in presence of pigtail sample for 1063 hours at 100 °C in nitrogen
Figure 8.12 UV-Visible spectra of transformer oil containing 50 ppm of DBDS aged in presence of pigtail sample for 1735 hours at 100 °C in nitrogen
Figure 8.13 UV-Visible spectra of transformer oil containing 100 ppm of DBDS aged in presence of pigtail sample for 1735 hours at 100 °C in nitrogen
Figure 8.14 UV-Visible spectra of transformer oil containing 200 ppm of DBDS aged in presence of pigtail sample for 1735 hours at 100 °C in nitrogen
Figure 8.15 UV-Visible spectra of transformer oil containing 300 ppm of DBDS aged in presence of pigtail sample for 1735 hours at 100 °C in nitrogen
Figure 8.16 UV-Visible spectra of transformer oil containing 100 ppm of DBDS aged in presence of pigtail sample for 616 hours at 140 °C in nitrogen
Figure 8.17 UV-Visible spectra of transformer oil containing 200 ppm of DBDS aged in presence of pigtail sample for 370 hours at 140 °C in nitrogen
Figure 8.18 UV-Visible spectra of transformer oil containing 50 ppm of DBDS aged in presence of pigtail sample for 976 hours at 100 °C in air
Figure 8.19 UV-Visible spectra of transformer oil containing 100 ppm of DBDS aged in presence of pigtail sample for 976 hours at 100 °C in air
Figure 8.20 UV-Visible spectra of transformer oil containing 200 ppm of DBDS aged in presence of pigtail sample for 976 hours at 100 °C in air
Figure 8.21 UV-Visible spectra of transformer oil containing 50 ppm of DBDS aged in presence of pigtail sample for 600 hours at 140 °C in air
Figure 8.22 UV-Visible spectra of transformer oil containing 10 ppm of 2MBT and 50 ppm of DBDS aged in presence of pigtail sample for 600 hours at 140 °C in air
Figure 8.23 UV-Visible spectra of transformer oil containing 15 ppm of 2MBT and 100 ppm of Ir 39 aged in presence of pigtail sample for 160 hours at 150 °C in nitrogen
Figure 8.24 UV-Visible spectra of transformer oil containing 15 ppm of 2MBT and 100 ppm of Ir 39 aged in presence of pigtail sample for 283 hours at 150 °C in nitrogen
Figure 8.25 UV-Visible spectra of transformer oil containing 100 ppm of DBDS and 100 ppm of Ir 39 aged in presence of pigtail sample for 160 hours at 150 °C in nitrogen
Figure 8.26 UV-Visible spectra of transformer oil containing 100 ppm of DBDS and 100 ppm of Ir 39 aged in presence of pigtail sample for 283 hours at 150 °C in nitrogen
Figure 8.27 UV-Visible spectra of transformer oil containing 15 ppm of 2MBT and 100 ppm of BTA aged in presence of pigtail sample for 160 hours at 150 °C in nitrogen
Figure 8.28 UV-Visible spectra of transformer oil containing 15 ppm of 2MBT and 100 ppm of BTA aged in presence of pigtail sample for 283 hours at 150 °C in nitrogen
Figure 8.29 UV-Visible spectra of transformer oil containing 100 ppm of DBDS and 100 ppm of BTA aged in presence of pigtail sample for 160 hours at 150 °C in nitrogen
Figure 8.30 UV-Visible spectra of transformer oil containing 100 ppm of DBDS and 100 ppm of BTA aged in presence of pigtail sample for 283 hours at 150 °C in nitrogen
Figure 9.1 Typical S-curve and factors affecting the dissipation factor
Figure 9.2 Variation of DF with frequency of clean paper oil insulation before drying and after thermal ageing at 130 °C for 676 and 1200 hours
Figure 9.3 Variation of DF with frequency of paper oil containing different concentrations of DBDS aged at 100 °C for 1423 hours
Figure 9.4 Variation of DF with frequency in case of paper oil insulation containing different concentrations of DBDS which is aged at 100 °C for 1735 hours
Figure 9.5 Variation of DF with frequency in case of paper oil insulation containing different concentrations of DBDS after thermal ageing at 120 °C for 1080 hours
Figure 9.6 Variation of DF with frequency in case of paper oil insulation containing different concentrations of DBDS after thermal ageing at 120 °C for 1400 hours
Figure 9.7 Variation of DF with frequency of paper oil insulation in oil with different concentrations of DBDS after thermal ageing at 130 °C for 676 hours
Figure 9.8 Variation of DF with frequency of paper oil insulation in oil with 500 ppm of DBDS after thermal ageing at 140 °C for different durations
Figure 9.9 Variation of DF with frequency in case of paper oil containing 10 ppm of MS in oil which is aged at 100 °C in nitrogen for different durations 215
Figure 9.10 Variation of DF with frequency in case of paper oil containing 20 ppm of MS in oil which is aged at 100 °C in nitrogen for different durations 216
Figure 9.11 Variation of DF with frequency in case of paper oil containing 10 ppm of MS in oil which is aged at 130 °C in nitrogen for different durations 217
Figure 9.12 Variation of DF with frequency in case of paper oil insulation with 20 ppm of MS in oil which is aged at 130 °C in nitrogen 218
Figure 9.13 Number of transformers falling in each range of mercaptan sulphur 232