CONTENTS

LIST OF FIGURES i
LIST OF TABLES iii

SYNOPSIS iv

1.0 INTRODUCTION 1

2.0 LITERATURE REVIEW 4

2.1 FLUORIDES IN THE ENVIRONMENT 5
2.2 HEALTH EFFECTS OF FLUORIDES 6
2.3 REMOVAL OF FLUORIDE FROM WATER 10

2.3.1 Chemical methods 10
 2.3.1.1 Aluminum salts and Nalgonda Technique
 2.3.1.2 Lime 14
 2.3.1.3 Magnesia 14
 2.3.1.4 Other chemicals 15

2.3.2 Methods based on Adsorption and Ion exchange 15
 2.3.2.1 Activated Alumina 15
 2.3.2.2 Bone char 17
 2.3.2.3 Activated carbon 18
 2.3.2.4 Ion exchange resins 18
 2.3.2.5 Lime stone, special soils, clay, flyash, serpentline, etc., 20
 2.3.2.6 Rare earth materials 23

2.3.3 Miscellaneous methods 24
 2.3.3.1 Electrochemical coagulation 24

2.4 EFFORTS FOR DEFLUORIDATION OF WATER SUPPLIES IN INDIA 24
2.5 A CASE FOR REMOVAL OF FLUORIDE FROM WATER 25

3.0 SCOPE AND STUDY APPROACH 26

Contd
EXPERIMENTAL METHODOLOGY

4.1 SORBENT MATERIALS
4.1.1 Bauxite
4.1.2 Lanthanum oxide and Cerium hydrate
4.1.3 gamma Alumina

4.2 TEST FLUORIDE SOLUTION AND OTHER REAGENT SOLUTIONS

4.3 ACID TREATMENT OF BAXRITE

4.4 BATCH SORPTION EXPERIMENTS

4.5 UPFLOW FIXED BED COLUMN STUDIES

4.6 ANALYTICAL METHODS

4.7 IR SPECTROSCOPY AND X-RAY DIFFRACTION STUDIES

RESULTS AND DISCUSSION

5.1 KINETICS OF SORPTION
5.1.1 Bauxite
5.1.2 Lanthanum oxide
5.1.3 Cerium hydrate
5.1.4 gamma Alumina

5.2 ORDER OF SORPTION KINETICS
5.2.1 Lagergren first order equation
5.2.2 Pseudo-second order equation
5.2.3 Thomas equation

5.3 EVALUATION OF RATE LIMITING STEP OF THE SORPTION REACTION
5.3.1 Film and Pore diffusion
5.3.2 Rate parameters of intraparticle diffusion
5.3.3 Interparticle studies

5.4 EQUILIBRIUM SORPTION REACTION
5.4.1 Langmuir isotherm model
5.4.2 Freundlich isotherm model
5.4.3 BET isotherm model
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.5</td>
<td>EFFECT OF SORBENT DOSE</td>
<td>72</td>
</tr>
<tr>
<td></td>
<td>5.5.1 Treated Bauxite</td>
<td>72</td>
</tr>
<tr>
<td></td>
<td>5.5.2 Lanthanum oxide</td>
<td>74</td>
</tr>
<tr>
<td></td>
<td>5.5.3 Cerium hydrate</td>
<td>77</td>
</tr>
<tr>
<td></td>
<td>5.5.4 gamma Alumina</td>
<td>79</td>
</tr>
<tr>
<td>5.6</td>
<td>STUDIES ON SORPTION INTERACTION</td>
<td>81</td>
</tr>
<tr>
<td></td>
<td>5.6.1 Desorption studies</td>
<td>81</td>
</tr>
<tr>
<td></td>
<td>5.6.2 Regeneration studies</td>
<td>81</td>
</tr>
<tr>
<td>5.7</td>
<td>STUDIES ON INFLUENCE OF CHEMICAL PARAMETERS ON SORPTION PROCESS</td>
<td>85</td>
</tr>
<tr>
<td></td>
<td>5.7.1 Effect of pH</td>
<td>85</td>
</tr>
<tr>
<td></td>
<td>5.7.2 Effect of anions and cations</td>
<td>90</td>
</tr>
<tr>
<td></td>
<td>5.7.3 Studies with tap water</td>
<td>95</td>
</tr>
<tr>
<td>5.8</td>
<td>ENGINEERING ASPECTS OF SORPTION PROCESS</td>
<td>99</td>
</tr>
<tr>
<td></td>
<td>5.8.1 Performance of Upflow Columns</td>
<td>99</td>
</tr>
<tr>
<td></td>
<td>5.8.2 Profile of Breakthrough curves</td>
<td>104</td>
</tr>
<tr>
<td>5.9</td>
<td>X-RAY DIFFRACTION (XRD) STUDIES</td>
<td>115</td>
</tr>
<tr>
<td>5.10</td>
<td>INFRARED (IR) SPECTRAL STUDIES</td>
<td>115</td>
</tr>
<tr>
<td>6.0</td>
<td>SUMMARY AND SUGGESTIONS</td>
<td>131</td>
</tr>
<tr>
<td></td>
<td>6.1 SUMMARY OF SORPTION REACTION</td>
<td>131</td>
</tr>
<tr>
<td></td>
<td>6.2 SUGGESTIONS FOR FURTHER WORK</td>
<td>133</td>
</tr>
<tr>
<td></td>
<td>REFERENCES</td>
<td>134</td>
</tr>
</tbody>
</table>