Table of Contents

1. Introduction
 1.1 Introduction
 1.2 Few definitions regarding a Battery
 1.3 Basic concepts of rechargeable Lithium batteries
 1.4 Criteria for a successful cathode material
 1.5 Advantages
 1.6 Disadvantages
 1.7 Need for nanostructured Battery materials
 1.8 Oxide cathodes
 1.9 Layered LiCoO$_2$
 1.10 Limitations of oxide cathodes
 1.11 Polyanionic Frameworks
 1.12 LiFePO$_4$, the material under consideration
 1.13 Crystal structure of LiFePO$_4$
 1.14 Mechanism for Insertion/Extraction of Lithium
to/from LiFePO$_4$
 1.15 Electronic structure of octahedral transition metal ions
 1.16 Spin Hamiltonian of Fe$^{2+}$ in the trigonal crystal field;
 Energy diagram
 1.17 Electronic Structure of LiFePO$_4$
 1.18 Magnetic structure of LiFePO$_4$
 1.19 Importance of Carbon Coating
 1.20 Aim and Scope of the thesis
 References

2. Experimental Techniques
 2.1 Introduction
 2.2 X–Ray diffraction
 2.3 SEM and EDAX
 2.4 Fourier Transform of Infrared Spectroscopy (FTIR)
 2.41 Theory of Interferometer operation
 2.5 Mössbauer Spectroscopy
 2.51 Isomer Shift
 2.52 Electric Quadrupole Interactions
2.53 Magnetic Hyperfine Interactions
2.54 Combined Magnetic and Quadrupole Interactions
2.55 Mössbauer Spectrometer
2.56 Mössbauer Absorber Preparation

2.6 Superconducting Quantum Interference Device (SQUID)
 2.61 Principle
 2.62 Requirement
 2.63 Working of a SQUID

References

3. Structure and Synthesis of LiFePO₄
 3.1 Synthesis of LiFePO₄
 3.2 Characterization
 3.2.1 Crystal Structure
 3.2.2 Micro Structure
 3.2.3 Elemental Analysis
 3.2.4 Local Structure
 3.2.5 Phase Purity

References

4. (1-x)Fe²⁺(PO₄)₃:(x)LiFePO₄ Two phase system
 4.1 Introduction
 4.2 Synthesis
 4.3 Structural details of Fe₃(PO₄)₂
 4.4 Structural characterization by XRD
 4.5 Vibrational spectroscopy of LiₓFePO₄ System
 4.5.1 High-frequency region
 4.5.2 Low-frequency region
 4.6 Mössbauer spectroscopy of LiₓFePO₄
 4.7 Conclusions

References

5. NaₓLi₁₋ₓFePO₄ system
 5.1 Introduction
 5.2 Synthesis
 5.3 Structural characterization by XRD

References
5.4 Vibrational spectroscopy of Na$_{x}$Li$_{1-x}$FePO$_4$
 5.5.1 High – frequency region
 5.5.2 Low – frequency region
5.5 Mössbauer spectroscopy of Na$_{x}$Li$_{1-x}$FePO$_4$
5.6 Conclusions
References

6. Phospho-Vanadate (LiFe(VO$_4$)$_x$(PO$_4$)$_{1-x}$)System
 6.1 Introduction
 6.2 Synthesis
 6.3 Structural characterization by XRD
 6.4 Vibrational spectroscopy of LiFe(VO$_4$)$_x$(PO$_4$)$_{1-x}$
 6.4.1 High – frequency region
 6.4.2 Low – frequency region
 6.5 Mössbauer spectroscopy of LiFe(VO$_4$)$_x$(PO$_4$)$_{1-x}$
 6.6 Conclusions
References

7. Order – disorder phase transition
 7.1 Theoretical background of FTIR of Olivine–type structure
 7.2 Assignment of the bands of the IR spectra
 7.2.1 The high-frequency region: internal stretching vibrations
 7.2.2 The medium and low frequency regions
 7.3 TG – DTA analysis
 7.4 FTIR studies
 7.5 Results and Discussion
 7.5.1 Bending modes
 7.5.2 Stretching modes
 7.5.3 Further Analysis
References

8. Magnetic Phase transition and Relaxation effects in LiFePO$_4$
 8.1 Introduction
 8.2 Molecular field theory of Antiferromagnetism
 8.3 Behavior above the Néel temperature
8.4 The Néel temperature
8.5 Susceptibility below the Néel temperature
8.6 Paramagnetic – Antiferromagnetic Phase transition
8.7 Antiferromagnetism in LiFePO₄
8.8 DC Magnetisation measurements
8.9 Relaxation effects in Mössbauer spectroscopy
8.10 Low Temperature Mössbauer Experimental setup
8.11 Analysis of Mössbauer Spectra
8.12 Conclusions
References

9. **Electrochemical Characterization of LiFePO₄**

9.1 Test cell construction
9.2 Galvanostatic Charge/Discharge Cycling
9.3 Cell Electrochemical Tests
 9.3.1 Charge/Discharge Testing
9.4 Results and discussion
9.5 Conclusions
References

List of Publications

Appendix

--- O ---