Table of Contents

List of Contents

<table>
<thead>
<tr>
<th>SECTION</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIST OF FIGURES..</td>
<td>I</td>
</tr>
<tr>
<td>LIST OF TABLES...</td>
<td>IV</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS...</td>
<td>V</td>
</tr>
<tr>
<td>TABLE OF AMINO ACIDS..</td>
<td>VII</td>
</tr>
<tr>
<td>ABSTRACT..</td>
<td>VIII</td>
</tr>
</tbody>
</table>

CHAPTER 1 INTRODUCTION

1.1 Glaucoma.. 1

1.1.1 Aqueous humor outflow pathway.................................. 1

1.1.2 Optic nerve head cupping and glaucomatous neurodegeneration.. 2

1.1.3 Types of glaucoma.. 3

1.1.4 Risk factors for glaucoma..................................... 4

1.1.5 Molecular genetics of glaucoma................................ 5

1.1.6 Understanding the mechanism of glaucoma pathogenesis........ 8

1.1.7 Factors contributing to glaucomatous neurodegeneration...... 10

1.1.8 Diagnosis and treatment strategies for glaucoma.............. 12

1.1.9 Complete therapy... 13

1.2 Oxidative stress in glaucoma.................................... 14

1.3 Optineurin.. 18

1.3.1 Identification as a candidate gene for glaucoma............... 18

1.3.2 History of optineurin before identification as a glaucoma candidate gene.. 18

1.3.3 Structural features, alternative splicing and sub-cellular localization.. 18

1.3.4 Expression of optineurin in various ocular and non-ocular tissues.. 19

1.3.5 Optineurin mutations... 20
1.3.6 Functional studies on optineurin

1.3.6.1 Optineurin - component of TNF-α and NF-κB signaling pathway 22

1.3.6.2 Regulation of transcription and gene expression by optineurin 24

1.3.6.3 Role of optineurin in Golgi organization and vesicular transport 25

1.3.6.4 Optineurin and metabotropic glutamate receptor signaling 26

1.3.6.5 Optineurin in the context of glaucoma 27

1.4 Background and objectives of the study 28

CHAPTER 2 MATERIALS AND METHODS

2.1 Materials

2.1.1 Sources of chemicals 35

2.1.2 Antibodies 35

2.1.3 Bacterial strains 36

2.1.4 Cell lines 36

2.1.5 Plasmids 37

2.1.6 Bacterial media, Antibiotics and Chemical Stocks 37

2.2 Methods

2.2.1 Sterilization 40

2.2.2 Plasmid isolation 40

2.2.3 Quantitation of nucleic acids 41

2.2.4 Agarose gel electrophoresis 41

2.2.5 Restriction endonuclease digestion 42

2.2.6 Gel elution of DNA fragments 42

2.2.7 Ligation 42

2.2.8 Preparation of ultracompetent cells 42

2.2.9 Transformation of E.coli 43

2.2.10 DNA sequencing 43
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.2.11 RNA isolation</td>
<td>44</td>
</tr>
<tr>
<td>2.2.12 Polymerase chain reaction (PCR)</td>
<td>44</td>
</tr>
<tr>
<td>2.2.13 Reverse transcription and polymerase chain reaction (RT-PCR)</td>
<td>44</td>
</tr>
<tr>
<td>2.2.14 Plasmid vectors</td>
<td>45</td>
</tr>
<tr>
<td>2.2.14.1 Cloning vectors</td>
<td>46</td>
</tr>
<tr>
<td>2.2.14.2 Mammalian expression vectors</td>
<td>46</td>
</tr>
<tr>
<td>2.2.15 Yeast two-hybrid expression vectors</td>
<td>46</td>
</tr>
<tr>
<td>2.2.16 Optineurin expression vectors</td>
<td>47</td>
</tr>
<tr>
<td>2.2.17 Other expression vectors</td>
<td>48</td>
</tr>
<tr>
<td>2.2.18 Construction of mutations in optineurin cDNA by site directed</td>
<td>50</td>
</tr>
<tr>
<td>mutagenesis</td>
<td></td>
</tr>
<tr>
<td>2.2.19 Sequence analysis</td>
<td>51</td>
</tr>
<tr>
<td>2.2.20 Yeast strains, Media and Solutions used for yeast two-hybrid</td>
<td>53</td>
</tr>
<tr>
<td>screening</td>
<td></td>
</tr>
<tr>
<td>2.2.20.1 Yeast strain PJ694A</td>
<td>53</td>
</tr>
<tr>
<td>2.2.20.2 YPAD</td>
<td>53</td>
</tr>
<tr>
<td>2.2.20.3 YC</td>
<td>53</td>
</tr>
<tr>
<td>2.2.20.4 Preparation of YC medium</td>
<td>53</td>
</tr>
<tr>
<td>2.2.20.5 Preparation of YC medium plates</td>
<td>54</td>
</tr>
<tr>
<td>containing X-gal</td>
<td></td>
</tr>
<tr>
<td>2.2.20.6 Solutions used for yeast two-hybrid screening</td>
<td>54</td>
</tr>
<tr>
<td>2.2.20.7 Methods involved in yeast two-hybrid assays</td>
<td>55</td>
</tr>
<tr>
<td>2.2.20.7.1 Growth and maintenance of yeast strains</td>
<td>55</td>
</tr>
<tr>
<td>2.2.20.7.2 Plasmid isolation from yeast cells</td>
<td>55</td>
</tr>
<tr>
<td>2.2.20.7.3 Transformation of yeast with plasmid DNA</td>
<td>56</td>
</tr>
<tr>
<td>2.2.20.7.4 Cell lysate preparation from yeast cells for western blotting</td>
<td>56</td>
</tr>
<tr>
<td>2.2.20.7.5 Yeast two-hybrid c-DNA library screening</td>
<td>57</td>
</tr>
<tr>
<td>2.2.21 Cell biology techniques</td>
<td>58</td>
</tr>
<tr>
<td>2.2.21.1 Maintenance of cell lines</td>
<td>58</td>
</tr>
</tbody>
</table>
2.2.21.2 Transient transfection of cell lines 58
2.2.21.3 TNF-α induced cell death assays 59
2.2.21.4 Antibody staining of cells 59
2.2.21.5 Fluorescence and confocal microscopy 60
2.2.21.6 Apoptosis assay .. 61
2.2.21.7 Detection of intracellular ROS levels 61
2.2.21.8 SDS Polyacrylamide Gel Electrophoresis (SDS-PAGE) ... 62
2.2.21.9 Western blotting .. 62
2.2.22 Statistical analysis .. 63

CHAPTER 3 E50K MUTANT OF OPTINEURIN SELECTIVELY INDUCES DEATH OF RETINAL GANGLION CELLS

3.1 Introduction .. 64
3.2 Results .. 65
 3.2.1 E50K mutant of optineurin induces death selectively in RGC-5 cells ... 65
 3.2.2 E50K-induced cell death is inhibited by Bcl2 and requires caspases .. 67
 3.2.3 Optineurin and E50K mutant potentiate TNF-α induced cell death in retinal ganglion cells 67
 3.2.4 E50K-induced cell death is inhibited by antioxidants ... 68
 3.2.5 E50K overexpression increases ROS levels in RGC-5 cells ... 69
 3.2.6 Sub-cellular localization of endogenous optineurin in mammalian cell lines 69
 3.2.7 Expression and localization of overexpressed optineurin and its mutants 71
3.3 Discussion ... 71
3.4 Conclusion ... 75
CHAPTER 4 IDENTIFICATION OF OPTINEURIN INTERACTING PROTEINS BY YEAST TWO-HYBRID SCREENING

4.1 Introduction ... 76
4.2 The yeast two-hybrid system ... 76
4.3 Results .. 78
 4.3.1 Expression of optineurin in yeast .. 78
 4.3.2 Identification of optineurin interacting proteins by yeast two-hybrid cDNA library screening ... 79
 4.3.2.1 CYLD as an interacting partner of optineurin ... 81
 4.3.2.2 Optineurin ... 82
 4.3.2.3 FLJ12168 (TBC1D17) .. 82
 4.3.2.4 IK-cytokine ... 83
 4.3.2.5 A20 (TNF-β inducible protein-3) ... 85
 4.3.2.6 HIBADH .. 86
 4.3.2.7 UXT .. 87
 4.3.2.8 ZBTB33 .. 88
 4.3.2.9 HLA-B associated transcript 4 (BAT4) .. 88
 4.3.3 Interaction studies of optineurin mutants with yeast two-hybrid positives obtained ... 89
 4.3.3.1 Interaction of E50K and R545Q with CYLD, TBC1D17 and optineurin ... 89
 4.3.3.2 Interaction of optineurin mutants with other yeast two-hybrid positives .. 90
4.4 Discussion ... 91
 4.4.1 Optineurin interacts with diverse cellular proteins .. 92
 4.4.1.1 Optineurin interacts with three of the NF-κB regulators 92
 4.4.1.2 Interaction of optineurin mutants with proteins involved in membrane trafficking .. 95
 4.4.1.3 Oligomerization of optineurin ... 96
 4.4.1.4 Interaction of optineurin with proteins involved .. 96