CONTENTS

General Introduction .. 1 - 12

I. Cancer
II. Cancer types
III. Cancer and treatment
IV. Chemotherapy
V. Chemotherapy and drug resistance
VI. ABC transporters
VII. MDR1
VIII. MDR1 inhibitors
IX. Regulation of MDR1 expression

Chapter 1: COX-2: Regulation of multidrug resistance

1.1. Introduction .. 13 - 21
 1.1.1. Cyclooxygenases
 1.1.2. COX-2 and cancer
 1.1.3. NSAIDs
 1.1.4. COX-2 inhibitors
 1.1.5. Celecoxib
 1.1.6. COX-2 and multidrug resistance
 1.1.7. Objectives

1.2. Materials and methods .. 22 - 32
 1.2.1. Chemicals
 1.2.2. HepG2 cell line
 1.2.3. Cell culture and treatment
1.2.4. Effect of celecoxib or doxorubicin on proliferation of HepG2 cells
1.2.5. Intracellular drug accumulation assays
1.2.6. Synergistic effect of celecoxib and doxorubicin on proliferation of HepG2 cells
1.2.7. RT-PCR analysis
1.2.8. Preparation of whole cell extracts and immunoblot analysis
1.2.9. Electrophoretic mobility shift assay (EMSA)
1.2.10. PGE\textsubscript{2} estimation
1.2.11. In silico studies
1.2.12. Statistical analysis

1.3. Results

1.3.1. Celecoxib and doxorubicin inhibited the proliferation of HepG2 cells
1.3.2. Celecoxib and doxorubicin synergistically inhibited the proliferation of HepG2 cells
1.3.3. Celecoxib treatment increased the accumulation of doxorubicin in HepG2 cells
1.3.4. Celecoxib inhibited MDR1 mRNA expression
1.3.5. Celecoxib inhibited MDR1 protein expression
1.3.6. Effect of celecoxib on expression of COX-2 in HepG2 cells
1.3.7. Celecoxib inhibited PGE\textsubscript{2} release in HepG2 cells
1.3.8. Celecoxib inhibited the translocation of AP-1 in HepG2 cells
1.3.9. Effect of celecoxib and PGE\textsubscript{2} on the expression of p-JNK
1.3.10. Effect of celecoxib on phosphorylation of JNK, ERK and p38

1.4. Discussion

1.4.1. Celecoxib, a selective COX-2 inhibitor enhances the accumulation of doxorubicin in HepG2 cells
1.4.2. Celecoxib enhances the sensitivity of HepG2 cells to doxorubicin
1.4.3. Celecoxib mediated down regulation of MDR1 expression enhances the sensitivity of HepG2 cells to doxorubicin

1.4.4. Celecoxib mediated downregulation of MDR1 expression is mediated by the inhibition of COX-2 activity but not its expression

1.4.5. Celecoxib-induced downregulation of MDR1 expression is mediated by the inhibition of AP-1 complex

1.4.6. Celecoxib-induced inhibition in the AP-1 complex is mediated by decreased phosphorylation of JNK (c-Jun NH2-terminal protein kinase)

1.4.7. Celecoxib-induced downregulation of MDR1 expression appears to be mediated by the inactivation of signal transduction pathways involving ERK, JNK and p38

1.4.8. In silico analysis correlated with our experimental results

1.5. Summary

Chapter 2: ROS: Regulation of multidrug resistance

2.1. Introduction

2.1.1. Reactive oxygen species
2.1.2. Antioxidant defenses
2.1.3. C-Phycocyanin
2.1.4. ROS: Role in diseases
2.1.5. ROS: Role in multidrug resistance
2.1.6. Objectives

2.2. Materials and Methods

2.2.1. Chemicals
2.2.2. Cell culture and treatment
2.2.3. Northern blot analysis of MDR1 mRNA expression
2.2.4. Measurement of ROS
2.2.5. Electrophoretic mobility shift assay (EMSA)
2.2.6. Preparation of whole cell extracts and immunoblot analysis
2.2.7. Transient transfection and preparation of cell extracts
2.2.8. Chloramphenicol acetyl transferase (CAT) enzyme assay
2.2.9. Confocal analysis
2.2.10. In silico modeling
2.2.11. Statistical analysis

2.3. Results 80 - 96

2.3.1. C-PC inhibited the 2-AAF-induced transcription of MDR1
2.3.2. C-PC inhibited the 2-AAF-induced MDR1 protein expression
2.3.3. C-PC decreased the 2-AAF-induced generation of ROS
2.3.4. C-PC inhibited the activation of Akt
2.3.5. C-PC prevented 2-AAF-induced translocation of NF-κB into nucleus
2.3.6. C-PC inhibited NF-κB dependent induction of mdr1 promoter by 2-AAF
2.3.7. C-PC inhibited the activation of Src
2.3.8. Confocal analysis

2.4. Discussion 97- 104

2.4.1. C-PC inhibited 2-AAF induced expression of MDR1 both at transcriptional and translational level
2.4.2. C-PC mediated decrease in MDR1 expression is by inhibition of ROS generation
2.4.3. C-PC mediated decrease in ROS generation in turn inhibits Akt phosphorylation
2.4.4. C-PC mediated decrease in ROS generation and Akt phosphorylation inhibits NF-κB translocation

2.5. Summary 105 - 106

3. Conclusions 107 - 109

4. References 110 - 129