LIST OF TABLES

<table>
<thead>
<tr>
<th>Table No.</th>
<th>Description</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 3.1</td>
<td>Inverter switching configuration</td>
<td>42</td>
</tr>
<tr>
<td>Table 3.2</td>
<td>Phase to neutral voltages of three phase voltage inverter</td>
<td>44</td>
</tr>
<tr>
<td>Table 3.3</td>
<td>Optimum voltage vector look-up table</td>
<td>47</td>
</tr>
<tr>
<td>Table 4.1</td>
<td>Rule base for DTC of AC drives using FLC</td>
<td>79</td>
</tr>
<tr>
<td>Table 4.2</td>
<td>Ranges of Input Membership Function</td>
<td>89</td>
</tr>
<tr>
<td>Table 4.3</td>
<td>Ranges of Output Membership Function</td>
<td>91</td>
</tr>
<tr>
<td>Table 5.1</td>
<td>Initial weights</td>
<td>116</td>
</tr>
<tr>
<td>Table 5.2</td>
<td>Final weights</td>
<td>116</td>
</tr>
<tr>
<td>Table 6.1</td>
<td>Comparison of stator current THDs obtained in various DTC strategies of IM</td>
<td>140</td>
</tr>
<tr>
<td>Table 6.2</td>
<td>Comparison of stator current THDs obtained in various DTC strategies of PMSM</td>
<td>140</td>
</tr>
<tr>
<td>Table 6.3</td>
<td>Comparison of stator current THD and relative torque ripple obtained in proposed DTC strategies of IM</td>
<td>142</td>
</tr>
<tr>
<td>Table 6.4</td>
<td>Comparison of stator current THD and relative torque ripple obtained in proposed DTC strategies of PMSM</td>
<td>142</td>
</tr>
<tr>
<td>Table 6.5</td>
<td>Comparison of relative torque ripple obtained with proposed Fuzzy controller and references</td>
<td>143</td>
</tr>
<tr>
<td>Table 6.6</td>
<td>Comparison of relative torque ripple obtained with proposed Fuzzy controller and references</td>
<td>143</td>
</tr>
<tr>
<td>Fig. No</td>
<td>Title</td>
<td>Page No.</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
<td>----------</td>
</tr>
<tr>
<td>3.1</td>
<td>Relative position of stator flux and rotor flux space vectors</td>
<td>39</td>
</tr>
<tr>
<td>3.2</td>
<td>Voltage Source Inverter</td>
<td>41</td>
</tr>
<tr>
<td>3.3</td>
<td>Phase voltage space vectors and appropriate sectors</td>
<td>43</td>
</tr>
<tr>
<td>3.4</td>
<td>Control of stator flux space vector by application of appropriate voltage vector</td>
<td>45</td>
</tr>
<tr>
<td>3.5</td>
<td>Selection of the appropriate voltage vector for change in stator flux and torque</td>
<td>46</td>
</tr>
<tr>
<td></td>
<td>(a) stator flux in sector 1</td>
<td>46</td>
</tr>
<tr>
<td></td>
<td>(b) stator flux in sector 2 (F = flux, T = torque)</td>
<td></td>
</tr>
<tr>
<td>3.6</td>
<td>Schematic representation of induction machine with reference frames in three-phase domain and common rotating d-q reference frame</td>
<td>48</td>
</tr>
<tr>
<td>3.7</td>
<td>Dynamic equivalent circuit of an Induction machine in an arbitrary rotating common reference frame</td>
<td>50</td>
</tr>
<tr>
<td>3.8</td>
<td>Direct torque control scheme for Induction motor</td>
<td>52</td>
</tr>
<tr>
<td>3.9</td>
<td>Simulation design for DTC of Induction motor</td>
<td>53</td>
</tr>
<tr>
<td>3.10</td>
<td>Direct Torque Control unit</td>
<td>54</td>
</tr>
<tr>
<td>3.11</td>
<td>PI Speed Controller</td>
<td>55</td>
</tr>
<tr>
<td>3.12</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(a) Torque hysteresis controller</td>
<td>55</td>
</tr>
<tr>
<td></td>
<td>(b) Flux hysteresis controller</td>
<td>55</td>
</tr>
<tr>
<td>3.13</td>
<td>Sector selection unit</td>
<td>55</td>
</tr>
<tr>
<td>3.14</td>
<td>Estimation of Flux and Torque parameters</td>
<td>56</td>
</tr>
<tr>
<td>3.15</td>
<td>Voltage vector selection lookup table</td>
<td>57</td>
</tr>
<tr>
<td>3.16</td>
<td>Simulink representation of Inverter voltages</td>
<td>57</td>
</tr>
<tr>
<td>3.17</td>
<td>3-phase to 2-phase conversion system</td>
<td>58</td>
</tr>
<tr>
<td>3.18</td>
<td>Simulink layout of Induction machine model</td>
<td>59</td>
</tr>
</tbody>
</table>
3.19 Conventional DTC of Induction motor - locus of stator flux 59
3.20 Conventional DTC of Induction motor - No load initial characteristics 60
3.21 Conventional DTC of Induction motor - Steady state characteristics 61
3.22 Conventional DTC of Induction motor - Speed reversal from 150 rad/s to -150 rad/s 62
3.23 Conventional DTC of Induction motor - Load torque of 15 Nm applied at 0.7s and removed at 1.4s 63
3.24 Direct torque control scheme for Permanent Magnet Synchronous motor 64
3.25 Simulation design for DTC of Permanent Magnet Synchronous motor 67
3.26 Simulink Model of PMSM 68
3.27 Conventional DTC of Synchronous motor - locus of stator flux 69
3.28 Conventional DTC of Synchronous motor - No load initial characteristics 69
3.29 Conventional DTC of Synchronous motor - Steady state characteristics 70
3.30 Conventional DTC of Synchronous motor - Speed reversal from 150 rad/s to -150 rad/s 71
3.31 Conventional DTC of Synchronous motor - Load torque of 2 Nm applied at 0.7s and removed at 1.4s 72
4.1 A diagrammatic view of the Mamdani-based FLC 78
4.2 A 2-input, 2-rule Mamdani model 80
4.3 Implementation of Fuzzy controller in DTC 87
4.4 2 inputs and 1 output Fuzzy Editor 88
4.5 Input membership function plots for fuzzy controller 90
4.6 Output membership function plots for fuzzy controller 90
4.7 Rule Editor 92
4.8 Rule Viewer 92
4.9 Surface Viewer 93
4.10 Fuzzy controller based DTC scheme for Induction motor 94
4.11 Locus of stator flux in Fuzzy logic controller based DTC 95
4.12 Fuzzy logic controller based DTC of IM at no-load 95
4.13 Fuzzy logic controller based DTC of IM - Steady state 96
4.14 Fuzzy logic controller based DTC of IM - Speed reversal 97
4.15 Fuzzy logic controller based DTC of IM - Load torque 98
4.16 Fuzzy controller based DTC scheme for Permanent magnet Synchronous motor 99
4.17 Fuzzy logic controller based DTC - locus of stator flux 99
4.18 Fuzzy logic controller based DTC of Synchronous motor at no-load 100
4.19 Fuzzy logic controller based DTC of Synchronous motor - Steady state 101
4.20 Fuzzy logic controller based DTC of Synchronous motor - Speed reversal 102
4.21 Fuzzy logic controller based DTC of Synchronous motor - load torque 103
5.1 Recurrent network 107
5.2 Single Neuron 108
5.3 RNN Architecture based Neuro-Controller 111
5.4 Simulink model of Neural Network controller 117
5.5 Neural controller based DTC scheme for Induction motor 118
5.6 Neural Network controller based DTC of Induction motor - locus of stator flux 119
5.7 Neural Network controller based DTC of Induction motor at no-load 120
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.8</td>
<td>Neural Network controller based DTC of Induction motor - Steady state</td>
<td>121</td>
</tr>
<tr>
<td>5.9</td>
<td>Neural Network controller based DTC of Induction motor - Speed reversal</td>
<td>122</td>
</tr>
<tr>
<td>5.10</td>
<td>Neural Network controller based DTC of Induction motor - Load torque</td>
<td>123</td>
</tr>
<tr>
<td>5.11</td>
<td>Neural controller based DTC scheme for Synchronous motor</td>
<td>124</td>
</tr>
<tr>
<td>5.12</td>
<td>Neural Network controller based DTC of Synchronous motor - locus of stator flux</td>
<td>125</td>
</tr>
<tr>
<td>5.13</td>
<td>Neural Network controller based DTC of Synchronous motor at no-load</td>
<td>126</td>
</tr>
<tr>
<td>5.14</td>
<td>Neural Network controller based DTC of Synchronous motor - Steady state</td>
<td>127</td>
</tr>
<tr>
<td>5.15</td>
<td>Neural Network controller based DTC of Synchronous motor - Speed reversal</td>
<td>128</td>
</tr>
<tr>
<td>5.16</td>
<td>Neural Network controller based DTC of Synchronous motor - Load torque</td>
<td>128</td>
</tr>
<tr>
<td>6.1</td>
<td>Conventional DTC of IM - Stator current THD</td>
<td>134</td>
</tr>
<tr>
<td>6.2</td>
<td>Fuzzy logic based DTC of IM - Stator current THD</td>
<td>134</td>
</tr>
<tr>
<td>6.3</td>
<td>Neural Network based DTC of IM - Stator current THD</td>
<td>135</td>
</tr>
<tr>
<td>6.4</td>
<td>Conventional DTC of IM - stator current and torque ripple</td>
<td>135</td>
</tr>
<tr>
<td>6.5</td>
<td>Fuzzy logic based DTC of IM - stator current and torque ripple</td>
<td>136</td>
</tr>
<tr>
<td>6.6</td>
<td>Neural Network based DTC of IM - stator current and torque ripple</td>
<td>136</td>
</tr>
<tr>
<td>6.7</td>
<td>Conventional DTC of PMSM - Stator current THD</td>
<td>137</td>
</tr>
<tr>
<td>6.8</td>
<td>Fuzzy logic based DTC of PMSM - Stator current THD</td>
<td>137</td>
</tr>
<tr>
<td>6.9</td>
<td>Neural Network based DTC of PMSM - Stator current THD</td>
<td>138</td>
</tr>
<tr>
<td>Section</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>6.10</td>
<td>Conventional DTC of PMSM - stator current and torque ripple</td>
<td>138</td>
</tr>
<tr>
<td>6.11</td>
<td>Fuzzy logic based DTC of PMSM - stator current and torque ripple</td>
<td>139</td>
</tr>
<tr>
<td>6.12</td>
<td>Neural Network based DTC of PMSM - stator current and torque ripple</td>
<td>139</td>
</tr>
<tr>
<td>6.13</td>
<td>Bar chart of the proposed Intelligent controllers implemented in IM compared with references</td>
<td>141</td>
</tr>
<tr>
<td>6.14</td>
<td>Bar chart of the proposed Intelligent controllers implemented in PMSM compared with references</td>
<td>141</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

1. IM - Induction Motor
2. PMSM - Permanent Magnet Synchronous Motor
3. PWM - Pulse Width Modulation
4. THD - Total Harmonic Distortion
5. FOC - Field Oriented Control
6. DTC - Direct Torque Control
7. ANN - Artificial Neural Network
8. FLC - Fuzzy Logic Control
9. ANFIS - Adaptive Neuro-Fuzzy Inference System
10. GA - Genetic Algorithm
11. AI - Artificial Intelligence
12. SVPWM - Space Vector Pulse Width Modulation
13. FLC - Fuzzy Logic Controller
14. VSI - Voltage Source Inverter
15. SVM - Space Vector Modulation
16. HSVPWM - Hybrid Space Vector Pulse Width Modulation
17. DSP - Digital Signal Processor
18. FPGA - Field Programmable Gate Array
19. RMS - Root Mean Square
20. GDPWM - Generalized Discontinuous Pulse Width Modulation
21. EMC - Electromagnetic Conducted Emissions
22. RPSVPWM - Random Position Space Vector Pulse Width Modulation

23. FSTPI - Four-Switch Three Phase Inverter
24. AMDTC - Approached Method Direct Torque Control
25. MPC - Multi Point Clamped
26. RZVDPWM - Random Zero Vector Distribution Pulse Width Modulation

27. EKF - Extended Kalman Filter
28. MRAS - Model Reference Adaptive System
29. ILC - Iterative Learning Control
<table>
<thead>
<tr>
<th>No.</th>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>30.</td>
<td>PI</td>
<td>Proportional Integral</td>
</tr>
<tr>
<td>31.</td>
<td>RBFN</td>
<td>Radial Basis Function Network</td>
</tr>
<tr>
<td>32.</td>
<td>EV</td>
<td>Electric Vehicle</td>
</tr>
<tr>
<td>33.</td>
<td>MC</td>
<td>Matrix Converter</td>
</tr>
<tr>
<td>34.</td>
<td>NDTC</td>
<td>Neuro Direct Torque Control</td>
</tr>
<tr>
<td>35.</td>
<td>DTNFC</td>
<td>Direct Torque Neuro-Fuzzy Control</td>
</tr>
<tr>
<td>36.</td>
<td>VGPI</td>
<td>Variable Gain Proportional Integral</td>
</tr>
<tr>
<td>37.</td>
<td>VDRPWM</td>
<td>Variable Delay Random Pulse Width Modulation</td>
</tr>
<tr>
<td>38.</td>
<td>NPC</td>
<td>Neutral Point Clamped</td>
</tr>
<tr>
<td>39.</td>
<td>PSO</td>
<td>Particle Swarm Optimization</td>
</tr>
<tr>
<td>40.</td>
<td>HDTC</td>
<td>Hysteresis Direct Torque Control</td>
</tr>
<tr>
<td>41.</td>
<td>EMI</td>
<td>Electro Magnetic Interference</td>
</tr>
<tr>
<td>42.</td>
<td>FEM</td>
<td>Finite Element Method</td>
</tr>
<tr>
<td>43.</td>
<td>CBSVPWM</td>
<td>Carrier Based Space Vector Pulse Width Modulation</td>
</tr>
<tr>
<td>44.</td>
<td>MPC</td>
<td>Model Predictive Controller</td>
</tr>
<tr>
<td>45.</td>
<td>DOB</td>
<td>Disturbance Observer</td>
</tr>
<tr>
<td>46.</td>
<td>MMF</td>
<td>Magneto Motive Force</td>
</tr>
<tr>
<td>47.</td>
<td>EMF</td>
<td>Electro Motive Force</td>
</tr>
<tr>
<td>48.</td>
<td>BLDC</td>
<td>Brush Less Direct Current</td>
</tr>
<tr>
<td>49.</td>
<td>M-FLC</td>
<td>Mamdani Fuzzy Logic Controller</td>
</tr>
<tr>
<td>50.</td>
<td>MF</td>
<td>Membership Function</td>
</tr>
<tr>
<td>51.</td>
<td>CG</td>
<td>Centre Of Gravity</td>
</tr>
<tr>
<td>52.</td>
<td>FIS</td>
<td>Fuzzy Inference System</td>
</tr>
<tr>
<td>53.</td>
<td>ES</td>
<td>Expert System</td>
</tr>
<tr>
<td>54.</td>
<td>LMS</td>
<td>Least Mean Square</td>
</tr>
<tr>
<td>55.</td>
<td>RNN</td>
<td>Recurrent Neural Network</td>
</tr>
<tr>
<td>56.</td>
<td>EBP</td>
<td>Error Back Propagation Algorithm</td>
</tr>
<tr>
<td>57.</td>
<td>FFT</td>
<td>Fast Fourier Transform</td>
</tr>
</tbody>
</table>
LIST OF APPENDICES

Appendix – I : Simulation Parameters and Specifications of the Induction Motor 162

Appendix – II : Simulation Parameters and Specifications of the Permanent Magnet Synchronous Motor 163