CONTENTS

Preface

Chapter I

Methodological overview of ab initio and density functional theory

1.1 Ab initio self consistent field theory

1.1.1 Introduction 1
1.1.2 Hartree-Fock self consistent field method 7
1.1.3 Electron correlation and Møller-Plesset perturbation theory 9
1.1.4 Basis set formalism 13

1.2 Density functional theory

1.2.1 Introduction 18
1.2.2 Hohenberg-Kohn theorems 20
1.2.3 Kohn-Sham equation 22
1.2.4 Exchange and correlation functionals 23
1.2.5 Chemical reactivity 26

1.3 Properties derived from the solution of Schrödinger (or like) equation

1.3.1 Molecular geometry and energy 30
1.3.2 Vibrational frequencies 31
1.3.3 Dipole moment 32
1.3.4 Atomic charges 32

1.4 Present study 34

References 35
Chapter II

Exact density functional theory solution for \(\text{H}_2 \) molecule

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 Introduction</td>
<td>38</td>
</tr>
<tr>
<td>2.2 Theoretical background</td>
<td>41</td>
</tr>
<tr>
<td>2.3 Exact DFT solution</td>
<td>43</td>
</tr>
<tr>
<td>2.4 Results and discussion</td>
<td></td>
</tr>
<tr>
<td>2.4.1 Chemical hardness</td>
<td>46</td>
</tr>
<tr>
<td>2.4.2 Fukui function</td>
<td>48</td>
</tr>
<tr>
<td>2.4.3 Distribution of electron density</td>
<td>49</td>
</tr>
<tr>
<td>2.5 Conclusions</td>
<td>51</td>
</tr>
<tr>
<td>References</td>
<td>52</td>
</tr>
</tbody>
</table>

Chapter III

Molecular structure and stability of aliphatic aldoxime molecules

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1 Introduction</td>
<td>53</td>
</tr>
<tr>
<td>3.2 Results and discussion</td>
<td></td>
</tr>
<tr>
<td>3.2.1 Molecular geometry</td>
<td>55</td>
</tr>
<tr>
<td>3.2.2 Conformational stability</td>
<td>58</td>
</tr>
<tr>
<td>3.2.3 Chemical hardness and chemical potential</td>
<td>59</td>
</tr>
<tr>
<td>3.2.4 Dipole moment and rotational constants</td>
<td>61</td>
</tr>
<tr>
<td>3.2.5 Atomic charges</td>
<td>61</td>
</tr>
<tr>
<td>3.3 Conclusions</td>
<td>63</td>
</tr>
<tr>
<td>References</td>
<td>64</td>
</tr>
</tbody>
</table>
Chapter IV

Structure and conformational stability of nitrosoethylene and substituted compounds of nitrosoethylene

4.1 Introduction 66

4.2 Results and discussion

4.2.1 Structural analysis 68

4.2.2 Energetics 72

4.2.3 Frequency analysis 73

4.2.4 Maximum hardness principle 76

4.2.5 Dipole moment, rotational constants and thermodynamical parameters 78

4.3 Conclusions 80

References 82

Chapter V

Molecular structure, conformational stability and cis effect of 1,4-dichlorobutadiene

5.1 Introduction 84

5.2 Results and discussion

5.2.1 Relative stability 86

5.2.2 Geometry 88

5.2.3 Chemical hardness and chemical potential 89

5.2.4 Vibrational frequencies 90

5.3 Conclusions 92

References 93
Chapter VI

Tautomerism of barbituric acid in gas phase and in solution

6.1 Introduction 94

6.2 Results and discussion

6.2.1 Molecular geometry 96
6.2.2 Relative stability 98
6.2.3 Maximum hardness principle 100
6.2.4 13C-NMR Chemical shift 101

6.3 Conclusions 104

References 105

Chapter VII

Structure and conformation and NMR studies on 1,2-dioxane and halogen substituted 1,2-dioxane compounds

7.1 Introduction 107

7.2 Results and discussion

7.2.1 Structural analysis 109
7.2.2 Conformational stability 112
7.2.3 Chemical hardness and chemical potential 114
7.2.4 Specific heat capacity and entropy 115
7.2.5 13C-NMR chemical shielding 115

7.3 Conclusions 118

References 119