Chapter 1
INTRODUCTION: BACKGROUND LITERATURE 01 - 44
1.1 General ... 01
1.2 Advanced Oxidation Processes (AOPs) 04
 1.2.1 Theory of Advanced Oxidation Processes 08
1.3 Photocatalysis as an AOP ... 10
 1.3.1 Homogeneous Photocatalysis 11
 1.3.1.1 UV/Hydrogen peroxide (UV/H₂O₂) 11
 1.3.1.2 UV/Ozone (UV/O₃) ... 13
 1.3.1.3 UV/Ozone and Hydrogen peroxide (UV/O₃/H₂O₂) ... 15
 1.3.1.4 Photo-Fenton system (UV/Fe²⁺/H₂O₂) 16
 1.3.2 Heterogeneous Photocatalysis 18
 1.3.2.1 General Mechanism .. 19
 1.3.2.2 Importance of Semiconductors as photocatalysts 22
 1.3.2.3 Some typical photocatalytic degradation studies 26
1.4 Ultrasonic Cavitation / Sonication 29
 1.4.1 Sonolysis/Sonocatalysis in water treatment: Case Studies ... 35
 1.4.2 Sonocatalytic inactivation of bacterial pollutants 36
1.5 Sonophotocatalytic processes 39

Chapter 2
OBJECTIVES OF THE STUDY, MATERIALS USED
AND PLAN OF THE THESIS ... 45 - 58
2.1 Objectives .. 45
2.2 Materials ... 47
 2.2.1 Zinc oxide (ZnO) .. 47
 2.2.2 Titanium dioxide (TiO₂) 50
 2.2.3 Phenol ... 53
 2.2.4 Hydrogen peroxide (H₂O₂) 54
 2.2.5 Miscellaneous materials 55
2.3 Plan of the thesis .. 55

Chapter 3
SEMICONDUCTOR OXIDES MEDIATED
PHOTOCATALYTIC DEGRADATION OF PHENOL
IN WATER ... 59 - 107
3.1 Introduction .. 59
3.2 Experimental Details .. 60
 3.2.1 Materials .. 60
Chapter 5
SEMICONDUCTOR OXIDES MEDIATED
SONOPHOTOCATALYTIC DEGRADATION OF
PHENOL IN WATER .. 153 - 195

5.1 Introduction .. 153
5.2 Experimental Details .. 155
 5.2.1 Materials .. 155
 5.2.2 Equipment Used ... 155
 5.2.3 Experiments and Analytical Methods.................................... 155
5.3 Results and Discussion ... 156
 5.3.1 Effect of catalyst loading ... 160
 5.3.2 Effect of concentration .. 163
 5.3.3 Effect of pH ... 167
 5.3.4 Effect of reaction volume .. 170
 5.3.5 Effect of particle size .. 173
 5.3.6 Effect of aeration/deaeration ... 174
5.4 Mechanism of the Sonophotocatalytic degradation 175
5.5 Effect of anions .. 180
5.6 Conclusions .. 195

Chapter 6
ZINC OXIDE MEDIATED SONOCATALYTIC REMOVAL
OF BACTERIAL CONTAMINANTS FROM WATER 197 - 239

6.1 Introduction .. 197
6.2 Experimental Details .. 199
 6.2.1 Materials .. 199
 6.2.2 Analytical Methods Used .. 199
 6.2.3 Microorganisms chosen for the study 199
 6.2.4 Culture conditions ... 202
6.3 Results and Discussion ... 204
 6.3.1 Effect of catalyst loading ... 207
 6.3.2 Effect of concentration .. 220
 6.3.3 Effect of pH ... 223
 6.3.4 Effect of H$_2$O$_2$... 228
6.4 Re-emergence .. 232
6.5 Mechanism of disinfection ... 234
6.6 Conclusions .. 238

Chapter 7
SUMMARY AND CONCLUSIONS .. 241 - 245
REFERENCES.. 247 - 271

Annexure I: List of Abbreviations and Symbols............... 273 - 274
Annexure II: Research Papers based on the current investigation. ... 275 - 278
Annexure III: Reprints of Paper published 279 - 331
1.1 General

Earth is known as water planet, with over 97% of its water in the oceans, ~2% locked up in glaciers and the remaining ~1% as fresh water. Water is one of the most essential ingredients to generate and sustain all forms of life. Unfortunately, many of the water resources are heavily polluted today due to reckless and unchecked human activity. If the deterioration in the quality and quantity of water continues at today’s rate, a stage will be reached when “water is everywhere but not a drop to drink”.

Water is a basic requirement for all industrial, domestic and commercial activities. The wastewater generated from different activities contains various contaminants that are harmful to all kinds of flora and fauna on the planet. Common water pollutants found in ground and surface waters include textile dyes, hydrocarbons, haloalkanes, alcohols, carboxylic acids, aromatic compounds, detergents, agrochemicals like insecticides and herbicides, inorganic compounds like heavy metals such