<table>
<thead>
<tr>
<th>Figure No.</th>
<th>Particulars</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fig. 2.1</td>
<td>Phase diagram for Na$_2$SO$_4$-V$_2$O$_5$ System (Otero et al, 1987).</td>
<td>12</td>
</tr>
<tr>
<td>Fig. 2.2</td>
<td>Schematic development of the thermal spray process and mechanism of coating build-up (Matthews, 2004).</td>
<td>19</td>
</tr>
<tr>
<td>Fig. 2.3</td>
<td>Classification of thermal spray coating processes (Pawlowski, 1995).</td>
<td>19</td>
</tr>
<tr>
<td>Fig. 2.4</td>
<td>A schematic of High Velocity Oxy-Fuel (HVOF) spray process (Khor and Leh, 1993).</td>
<td>22</td>
</tr>
<tr>
<td>Fig. 2.5</td>
<td>Schematic diagram of thermally sprayed spherical particle impinged onto a flat substrate (Fantassi et al, 1992 and Moreau et al, 1992).</td>
<td>22</td>
</tr>
<tr>
<td>Fig. 4.1</td>
<td>SEM micrographs of alloy powders (a) NiCr; (b) Cr$_3$C$_2$-NiCr; (c) Al$_2$O$_3$ and (d) Cr$_2$O$_3$.</td>
<td>67</td>
</tr>
<tr>
<td>Fig. 4.2</td>
<td>XRD pattern of NiCr powder.</td>
<td>68</td>
</tr>
<tr>
<td>Fig. 4.3</td>
<td>XRD pattern of Cr$_3$C$_2$-NiCr powder.</td>
<td>68</td>
</tr>
<tr>
<td>Fig. 4.4</td>
<td>XRD pattern of Al$_2$O$_3$ powder.</td>
<td>69</td>
</tr>
<tr>
<td>Fig. 4.5</td>
<td>XRD pattern of Cr$_2$O$_3$ powder.</td>
<td>69</td>
</tr>
<tr>
<td>Fig. 4.6</td>
<td>(a) XRD pattern and (b) SEM micrograph of 503-VGF-C sealant.</td>
<td>70</td>
</tr>
<tr>
<td>Fig. 4.7</td>
<td>Macrographs of HVOF sprayed coatings on T91 steel: (a) NiCr coating and (b) Cr$_3$C$_2$-NiCr coating.</td>
<td>73</td>
</tr>
<tr>
<td>Fig. 4.8</td>
<td>Macrographs of HVOF sprayed coatings on T91 steel: (a) NiCr coating with Al$_2$O$_3$ top coat; (b) Cr$_3$C$_2$-NiCr coating with Al$_2$O$_3$ top coat; (c) NiCr coating with Cr$_2$O$_3$ top coat and (d) Cr$_3$C$_2$-NiCr coating with Cr$_2$O$_3$ top coat.</td>
<td>73</td>
</tr>
</tbody>
</table>
Fig. 4.9 Macrographs of HVOF sprayed coatings on T91 steel: (a) sealed NiCr coating and (b) sealed Cr$_3$C$_2$-NiCr coating.

Fig. 4.10 Macrographs of HVOF sprayed coatings on T91 steel: (a) heat treated NiCr coating and (b) heat treated Cr$_3$C$_2$-NiCr coating.

Fig. 4.11 SEM micrograph along the cross-section of HVOF spray coatings on T91 boiler steel in as-sprayed condition: (a) NiCr coating; (b) Cr$_3$C$_2$-NiCr coating.

Fig. 4.12 SEM micrograph along the cross-section of HVOF spray coatings on T91 boiler steel in as-sprayed condition: (a) NiCr coating with Cr$_2$O$_3$ top coat and (b) NiCr coating with Al$_2$O$_3$ top coat.

Fig. 4.13 SEM micrograph along the cross-section of HVOF spray coatings on T91 boiler steel in as-sprayed condition: (a) Cr$_3$C$_2$-NiCr coating with Cr$_2$O$_3$ top coat and (b) Cr$_3$C$_2$-NiCr coating with Al$_2$O$_3$ top coat.

Fig. 4.14 Micro-hardness profiles of the HVOF-sprayed coatings on T91 boiler steel.

Fig. 4.15 Optical micrograph showing surface morphologies (polished) of HVOF sprayed coatings on T91 boiler steels in as-sprayed and post-treated condition: (a) NiCr as-deposited; (b) NiCr heat treated and (c) NiCr sealed.

Fig. 4.16 Optical micrograph showing surface morphologies (polished) of HVOF sprayed coatings on T91 boiler steels in as-sprayed and post-treated condition: (a) Cr$_3$C$_2$-NiCr as-deposited; (b) Cr$_3$C$_2$-NiCr heat treated and (c) Cr$_3$C$_2$-NiCr sealed.

Fig. 4.17 Optical micrograph showing cross-section morphologies of HVOF sprayed coatings on T91 boiler steels in as-sprayed condition: (a) NiCr and (b) Cr$_3$C$_2$-NiCr.

Fig. 4.18 Optical micrograph showing cross-section morphologies of HVOF sprayed coatings on T91 boiler steels after heat treatment: (a) NiCr and (b) Cr$_3$C$_2$-NiCr.
Fig. 4.19 Optical micrograph showing cross-section morphologies of HVOF sprayed coatings on T91 boiler steels after sealing treatment: (a) NiCr and (b) Cr₃C₂-NiCr.

Fig. 4.20 Optical micrograph showing cross-section morphologies of HVOF sprayed NiCr coatings on T91 boiler steels: (a) NiCr with Al₂O₃ top coat and (b) NiCr coating with Cr₂O₃ top coat.

Fig. 4.21 Optical micrograph showing cross-section morphologies of HVOF sprayed Cr₃C₂-NiCr coatings on T91 boiler steels: (a) Cr₃C₂-NiCr with Al₂O₃ top coat and (b) Cr₃C₂-NiCr coating with Cr₂O₃ top coat.

Fig. 4.22 X-ray diffraction profiles of the HVOF-sprayed NiCr coating on T91 boiler steel.

Fig. 4.23 X-ray diffraction profiles of the HVOF-spray NiCr coating on T91 boiler steel after heat treatment.

Fig. 4.24 X-ray diffraction profiles of the HVOF-spray NiCr coating on T91 boiler steel after sealing.

Fig. 4.25 X-ray diffraction profiles of the HVOF-spray NiCr coating on T91 boiler steel with Cr₂O₃ top coat.

Fig. 4.26 X-ray diffraction profiles of the HVOF-spray NiCr coating on T91 boiler steel with Al₂O₃ top coat.

Fig. 4.27 X-ray diffraction profiles of the HVOF-sprayed Cr₃C₂-NiCr coating on T91 boiler steel.

Fig. 4.28 X-ray diffraction profiles of the HVOF-spray Cr₃C₂-NiCr coating on T91 boiler steel after heat treatment.

Fig. 4.29 X-ray diffraction profiles of the HVOF-spray Cr₃C₂-NiCr coating on T91 boiler steel after sealing.

Fig. 4.30 X-ray diffraction profiles of the HVOF-spray Cr₃C₂-NiCr coating on T91 boiler steel with Cr₂O₃ top coat.

Fig. 4.31 X-ray diffraction profiles of the HVOF-spray Cr₃C₂-NiCr coating on T91 boiler steel with Al₂O₃ top coat.
Fig. 4.32 FE-SEM with EDS analysis for HVOF spray coating on T91 boiler steel showing elemental composition (wt.%) at selected points: (a) as-deposited NiCr coating; (b) heat treated NiCr coating and (c) sealed NiCr coating.

Fig. 4.33 FE-SEM with EDS analysis for HVOF spray coating on T91 boiler steel showing elemental composition (wt.%) at selected points: (a) NiCr coating with Al₂O₃ top coat and (b) NiCr coating with Cr₂O₃ top coat.

Fig. 4.34 FE-SEM with EDS analysis for HVOF spray coating on T91 boiler steel showing elemental composition (wt.%) at selected points: (a) as-deposited Cr₃C₂NiCr coating; (b) heat treated Cr₃C₂NiCr coating and (c) sealed Cr₃C₂NiCr coating.

Fig. 4.35 FE-SEM with EDS analysis for HVOF spray coating on T91 boiler steel showing elemental composition (wt.%) at selected points: (a) Cr₃C₂NiCr coating with Cr₂O₃ top coat and (b) Cr₃C₂NiCr coating with Al₂O₃ top coat.

Fig. 4.36 SEM micrograph along the cross-section of HVOF sprayed NiCr coating on T91 boiler steel in as-sprayed condition.

Fig. 4.37 Cross-sectional morphology and variation of elemental composition across the cross-section of the HVOF sprayed NiCr coating on T91 boiler steel in as-sprayed condition.

Fig. 4.38 SEM micrograph along the cross-section of HVOF sprayed NiCr coating on T91 boiler steel after heat treatment.

Fig. 4.39 Cross-sectional morphology and variation of elemental composition across the cross-section of the HVOF sprayed coating on T91 boiler steel: (a) heat treated NiCr coating and (b) sealed NiCr coating.

Fig. 4.40 Cross-sectional morphology and variation of elemental composition across the cross-section of the HVOF sprayed coating on T91 boiler steel: (a) NiCr coating with Al₂O₃ top coat and (b) NiCr coating with Cr₂O₃ top coat.
Fig. 4.41 SEM micrograph along the cross-section of HVOF sprayed Cr$_3$C$_2$-NiCr coating on T91 boiler steel in as-sprayed condition.

Fig. 4.42 Cross-sectional morphology and variation of elemental composition across the cross-section of the HVOF sprayed Cr$_3$C$_2$-NiCr coating on T91 boiler steel in as-sprayed condition.

Fig. 4.43 SEM micrograph along the cross-section of HVOF sprayed Cr$_3$C$_2$-NiCr coatings on T91 boiler steel after heat treatment.

Fig. 4.44 Cross-sectional morphology and variation of elemental composition across the cross-section of the HVOF sprayed coating on T91 boiler steel: (a) heat treated Cr$_3$C$_2$-NiCr coating and (b) sealed Cr$_3$C$_2$-NiCr coating.

Fig. 4.45 Cross-sectional morphology and variation of elemental composition across the cross-section of the HVOF sprayed coating on T91 boiler steel: (a) Cr$_3$C$_2$-NiCr coating with Al$_2$O$_3$ top coat and (b) Cr$_3$C$_2$-NiCr coating with Cr$_2$O$_3$ top coat.

Fig. 4.46 Composition image (SEI) and X-ray mappings across the cross-section of the HVOF sprayed NiCr coating on T91 boiler steel in as-sprayed condition.

Fig. 4.47 Composition image (SEI) and X-ray mappings across the cross-section of the HVOF sprayed NiCr coating on T91 boiler steel in heat treated condition.

Fig. 4.48 Composition image (SEI) and X-ray mappings across the cross-section of the HVOF sprayed NiCr coating on T91 boiler steel after sealing.

Fig. 4.49 Composition image (SEI) and X-ray mappings across the cross-section of NiCr duplex coating system with Al$_2$O$_3$ top coat.

Fig. 4.50 Composition image (SEI) and X-ray mappings across the cross-section of NiCr duplex coating system with Cr$_2$O$_3$ top coat.
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fig. 4.51</td>
<td>Composition image (SEI) and X-ray mappings across the cross-section of the HVOF sprayed Cr$_3$C$_2$-NiCr coating on T91 boiler steel in as-sprayed condition.</td>
</tr>
<tr>
<td>Fig. 4.52</td>
<td>Composition image (SEI) and X-ray mappings across the cross-section of the HVOF sprayed Cr$_3$C$_2$-NiCr coating on T91 boiler steel in heat treated condition.</td>
</tr>
<tr>
<td>Fig. 4.53</td>
<td>Composition image (SEI) and X-ray mappings across the cross-section of the HVOF sprayed Cr$_3$C$_2$-NiCr coating on T91 boiler steel after sealing.</td>
</tr>
<tr>
<td>Fig. 4.54</td>
<td>Composition image (SEI) and X-ray mappings across the cross-section of Cr$_3$C$_2$-NiCr duplex coating system with Al$_2$O$_3$ top coat.</td>
</tr>
<tr>
<td>Fig. 4.55</td>
<td>Composition image (SEI) and X-ray mappings across the cross-section of Cr$_3$C$_2$-NiCr duplex coating system with Cr$_2$O$_3$ top coat.</td>
</tr>
<tr>
<td>Fig. 5.1</td>
<td>Macrographs of the T91 steel samples subjected to hot corrosion in Na$_2$SO$_4$-60%V$_2$O$_5$ environment at 600 °C for 50 cycles: (a) bare T91 steel; (b) as-deposited NiCr coating; (c) heat treated NiCr coating; (d) sealed NiCr coating; (e) NiCr coating with Cr$_2$O$_3$ top coat and (f) NiCr coating with Al$_2$O$_3$ top coat.</td>
</tr>
<tr>
<td>Fig. 5.2</td>
<td>Weight gain/area vs. number of cycles plot for the bare and NiCr coated T91 steel subjected to molten salt environment (Na$_2$SO$_4$-60%V$_2$O$_5$) at 600 °C for 50 cycles.</td>
</tr>
<tr>
<td>Fig. 5.3</td>
<td>$(\text{Weight gain/area})^2$ vs. number of cycles plot for the bare and NiCr coated T91 steel subjected to molten salt environment (Na$_2$SO$_4$-60%V$_2$O$_5$) at 600 °C for 50 cycles.</td>
</tr>
<tr>
<td>Fig. 5.4</td>
<td>XRD pattern for bare T91 boiler steel subjected to the cyclic oxidation in Na$_2$SO$_4$-60%V$_2$O$_5$ environment at 600 °C for 50 cycles.</td>
</tr>
<tr>
<td>Fig. 5.5</td>
<td>XRD pattern for HVOF spray NiCr coated T91 boiler steel subjected to the cyclic oxidation in Na$_2$SO$_4$-60%V$_2$O$_5$ environment at 600 °C for 50 cycles.</td>
</tr>
</tbody>
</table>
Fig. 5.6 XRD pattern for the heat treated NiCr coating on T91 steel subjected to the cyclic oxidation in Na$_2$SO$_4$-60%V$_2$O$_5$ environment at 600 °C for 50 cycles.

Fig. 5.7 XRD pattern for the sealed NiCr coating on T91 steel subjected to the cyclic oxidation in Na$_2$SO$_4$-60%V$_2$O$_5$ environment at 600 °C for 50 cycles.

Fig. 5.8 XRD pattern for the NiCr duplex coating with Cr$_2$O$_3$ top coat on T91 steel subjected to the cyclic oxidation in Na$_2$SO$_4$-60%V$_2$O$_5$ environment at 600 °C for 50 cycles.

Fig. 5.9 XRD pattern for the NiCr coating with Al$_2$O$_3$ top coat on T91 steel subjected to the cyclic oxidation in Na$_2$SO$_4$-60%V$_2$O$_5$ environment at 600 °C for 50 cycles.

Fig. 5.10 FE-SEM/EDS analysis of the bare and coated T91 steel subjected to the cyclic oxidation in Na$_2$SO$_4$-60%V$_2$O$_5$ environment at 600 °C for 50 cycles: (a) bare T91 steel; (b) as-deposited NiCr coating and (c) heat treated NiCr coating.

Fig. 5.11 FE-SEM/EDS analysis of the coated T91 steel subjected to the cyclic oxidation in Na$_2$SO$_4$-60%V$_2$O$_5$ environment at 600 °C for 50 cycles: (a) sealed NiCr coating; (b) NiCr coating with Cr$_2$O$_3$ top coat and (c) NiCr coating with Al$_2$O$_3$ top coat.

Fig. 5.12 SEM micrograph and variation in elemental composition across the cross-section of T91 steel subjected to the cyclic oxidation in Na$_2$SO$_4$-60%V$_2$O$_5$ environment at 600 °C for 50 cycles.

Fig. 5.13 SEM micrograph and variation in elemental composition across the cross-section of the HVOF sprayed NiCr coating on T91 steel subjected to the cyclic oxidation in Na$_2$SO$_4$-60%V$_2$O$_5$ environment at 600 °C for 50 cycles.

Fig. 5.14 SEM micrograph and variation in elemental composition across the cross-section of the heat treated NiCr coating on T91 steel subjected to the cyclic oxidation in Na$_2$SO$_4$-60%V$_2$O$_5$ environment at 600 °C for 50 cycles.
Fig. 5.15 SEM micrograph and variation in elemental composition across the cross-section of the sealed NiCr coating on T91 steel subjected to the cyclic oxidation in Na$_2$SO$_4$-60%V$_2$O$_5$ environment at 600 °C for 50 cycles.

Fig. 5.16 SEM micrograph and variation in elemental composition across the cross-section of the NiCr duplex coating with Cr$_2$O$_3$ top coat on T91 steel subjected to the cyclic oxidation in Na$_2$SO$_4$-60%V$_2$O$_5$ environment at 600 °C for 50 cycles.

Fig. 5.17 SEM micrograph and variation in elemental composition across the cross-section of the NiCr duplex coating with Al$_2$O$_3$ top coat on T91 steel subjected to the cyclic oxidation in Na$_2$SO$_4$-60%V$_2$O$_5$ environment at 600 °C for 50 cycles.

Fig. 5.18 Composition image and X-ray mappings along the cross-section of the T91 steel subjected to Na$_2$SO$_4$-60%V$_2$O$_5$ environment at 600 °C for 50 cycles.

Fig. 5.19 Composition image and X-ray mappings along the cross-section of the HVOF sprayed NiCr coating on T91 steel subjected to Na$_2$SO$_4$-60%V$_2$O$_5$ environment at 600 °C for 50 cycles.

Fig. 5.20 Composition image and X-ray mappings along the cross-section of the heat treated NiCr coating on T91 steel subjected to Na$_2$SO$_4$-60%V$_2$O$_5$ environment at 600 °C for 50 cycles.

Fig. 5.21 Composition image and X-ray mappings along the cross-section of the sealed NiCr coating on T91 steel subjected to Na$_2$SO$_4$-60%V$_2$O$_5$ environment at 600 °C for 50 cycles.

Fig. 5.22 Composition image and X-ray mappings along the cross-section of the NiCr duplex coating with Cr$_2$O$_3$ top coat on T91 steel subjected to the cyclic oxidation in Na$_2$SO$_4$-60%V$_2$O$_5$ environment at 600 °C for 50 cycles.

Fig. 5.23 Composition image and X-ray mappings along the cross-section of the NiCr duplex coating with Al$_2$O$_3$ top coat on T91 steel subjected to the cyclic oxidation in Na$_2$SO$_4$-60%V$_2$O$_5$ environment at 600 °C for 50 cycles.
Fig. 5.24 Macrographs of the Cr$_3$C$_2$-NiCr coated T91 steel samples subjected to hot corrosion in Na$_2$SO$_4$-60%V$_2$O$_5$ environment at 600 °C for 50 cycles: (a) as-deposited Cr$_3$C$_2$-NiCr coating; (b) heat treated Cr$_3$C$_2$-NiCr coating; (c) sealed Cr$_3$C$_2$-NiCr coating; (d) Cr$_3$C$_2$-NiCr coating with Cr$_2$O$_3$ top coat and (e) Cr$_3$C$_2$-NiCr coating with Al$_2$O$_3$ top coat.

Fig. 5.25 Weight gain/area vs. number of cycles plot for the bare and Cr$_3$C$_2$-NiCr coated T91 steel subjected to molten salt environment (Na$_2$SO$_4$-60%V$_2$O$_5$) at 600 °C for 50 cycles.

Fig. 5.26 (Weight gain/area)2 vs. number of cycles plot for the bare and Cr$_3$C$_2$-NiCr coated T91 steel subjected to molten salt environment (Na$_2$SO$_4$-60%V$_2$O$_5$) at 600 °C for 50 cycles.

Fig. 5.27 XRD pattern for HVOF spray Cr$_3$C$_2$-NiCr coated T91 boiler steel subjected to the cyclic oxidation in Na$_2$SO$_4$-60%V$_2$O$_5$ environment at 600 °C for 50 cycles.

Fig. 5.28 XRD pattern for the heat treated Cr$_3$C$_2$-NiCr coating on T91 steel subjected to the cyclic oxidation in Na$_2$SO$_4$-60%V$_2$O$_5$ environment at 600 °C for 50 cycles.

Fig. 5.29 XRD pattern for the sealed Cr$_3$C$_2$-NiCr coating on T91 steel subjected to the cyclic oxidation in Na$_2$SO$_4$-60%V$_2$O$_5$ environment at 600 °C for 50 cycles.

Fig. 5.30 XRD pattern for the Cr$_3$C$_2$-NiCr coating with Cr$_2$O$_3$ top coat on T91 steel subjected to the cyclic oxidation in Na$_2$SO$_4$-60%V$_2$O$_5$ environment at 600 °C for 50 cycles.

Fig. 5.31 XRD pattern for the Cr$_3$C$_2$-NiCr coating with Al$_2$O$_3$ top coat on T91 steel subjected to the cyclic oxidation in Na$_2$SO$_4$-60%V$_2$O$_5$ environment at 600 °C for 50 cycles.

Fig. 5.32 FE-SEM/EDS analysis of the HVOF coated T91 steel subjected to the cyclic oxidation in Na$_2$SO$_4$-60%V$_2$O$_5$ environment at 600 °C for 50 cycles: (a) as-deposited Cr$_3$C$_2$-NiCr coating; (b) heat treated Cr$_3$C$_2$-NiCr coating and (c) sealed Cr$_3$C$_2$-NiCr coating.
Fig. 5.33 FE-SEM/EDS analysis of the coated T91 steel subjected to the cyclic oxidation in Na$_2$SO$_4$-60%V$_2$O$_5$ environment at 600 °C for 50 cycles: (a) Cr$_3$C$_2$-NiCr coating with Cr$_2$O$_3$ top coat and (b) Cr$_3$C$_2$-NiCr coating with Al$_2$O$_3$ top coat.

Fig. 5.34 SEM micrograph and variation in elemental composition across the cross-section of the HVOF sprayed Cr$_3$C$_2$-NiCr coating on T91 steel subjected to the cyclic oxidation in Na$_2$SO$_4$-60%V$_2$O$_5$ environment at 600 °C for 50 cycles.

Fig. 5.35 SEM micrograph and variation in elemental composition across the cross-section of the heat treated Cr$_3$C$_2$-NiCr coating on T91 steel subjected to the cyclic oxidation in Na$_2$SO$_4$-60%V$_2$O$_5$ environment at 600 °C for 50 cycles.

Fig. 5.36 SEM micrograph and variation in elemental composition across the cross-section of the sealed Cr$_3$C$_2$-NiCr coating on T91 steel subjected to the cyclic oxidation in Na$_2$SO$_4$-60%V$_2$O$_5$ environment at 600 °C for 50 cycles.

Fig. 5.37 SEM micrograph and variation in elemental composition across the cross-section of the Cr$_3$C$_2$-NiCr duplex coating with Cr$_2$O$_3$ top coat on T91 steel subjected to the cyclic oxidation in Na$_2$SO$_4$-60%V$_2$O$_5$ environment at 600 °C for 50 cycles.

Fig. 5.38 SEM micrograph and variation in elemental composition across the cross-section of the Cr$_3$C$_2$-NiCr duplex coating with Al$_2$O$_3$ top coat on T91 steel subjected to the cyclic oxidation in Na$_2$SO$_4$-60%V$_2$O$_5$ environment at 600 °C for 50 cycles.

Fig. 5.39 Composition image and X-ray mappings along the cross-section of the HVOF sprayed Cr$_3$C$_2$-NiCr coating on T91 steel subjected to Na$_2$SO$_4$-60%V$_2$O$_5$ environment at 600 °C for 50 cycles.

Fig. 5.40 Composition image and X-ray mappings along the cross-section of the heat treated Cr$_3$C$_2$-NiCr coating on T91 steel subjected to Na$_2$SO$_4$-60%V$_2$O$_5$ environment at 600 °C for 50 cycles.
Fig. 5.41 Composition image and X-ray mappings along the cross-section of the sealed Cr$_3$C$_2$-NiCr coating on T91 steel subjected to Na$_2$SO$_4$-60%V$_2$O$_5$ environment at 600 °C for 50 cycles.

Fig. 5.42 Composition image and X-ray mappings along the cross-section of the Cr$_3$C$_2$-NiCr duplex coating with Cr$_2$O$_3$ top coat on T91 steel subjected to the cyclic oxidation in Na$_2$SO$_4$-60%V$_2$O$_5$ environment at 600 °C for 50 cycles.

Fig. 5.43 Composition image and X-ray mappings along the cross-section of the Cr$_3$C$_2$-NiCr duplex coating with Al$_2$O$_3$ top coat on T91 steel subjected to the cyclic oxidation in Na$_2$SO$_4$-60%V$_2$O$_5$ environment at 600 °C for 50 cycles.

Fig. 5.44 Macrogaphs of the T91 steel samples subjected to hot corrosion in Na$_2$SO$_4$-60%V$_2$O$_5$ environment at 750 °C for 50 cycles: (a) bare T91 steel; (b) as-deposited NiCr coating; (c) heat treated NiCr coating; (d) sealed NiCr coating; (e) NiCr coating with Cr$_2$O$_3$ top coat and (f) NiCr coating with Al$_2$O$_3$ top coat.

Fig. 5.45 Weight gain/area vs. number of cycles plot for the bare and NiCr coated T91 steel subjected to molten salt environment (Na$_2$SO$_4$-60%V$_2$O$_5$) at 750 °C for 50 cycles.

Fig. 5.46 (Weight gain/area)2 vs. number of cycles plot for the bare and NiCr coated T91 steel subjected to molten salt environment (Na$_2$SO$_4$-60%V$_2$O$_5$) at 750 °C for 50 cycles.

Fig. 5.47 XRD pattern for bare T91 boiler steel subjected to the cyclic oxidation in Na$_2$SO$_4$-60%V$_2$O$_5$ environment at 750 °C for 50 cycles.

Fig. 5.48 XRD pattern for HVOF spray NiCr coated T91 boiler steel subjected to the cyclic oxidation in Na$_2$SO$_4$-60%V$_2$O$_5$ environment at 750 °C for 50 cycles.

Fig. 5.49 XRD pattern for the heat treated NiCr coating on T91 steel subjected to the cyclic oxidation in Na$_2$SO$_4$-60%V$_2$O$_5$ environment at 750 °C for 50 cycles.
Fig. 5.50 XRD pattern for the sealed NiCr coating on T91 steel subjected to the cyclic oxidation in Na$_2$SO$_4$-60%V$_2$O$_5$ environment at 750 °C for 50 cycles.

Fig. 5.51 XRD pattern for the NiCr coating with Cr$_2$O$_3$ top coat on T91 steel subjected to the cyclic oxidation in Na$_2$SO$_4$-60%V$_2$O$_5$ environment at 750 °C for 50 cycles.

Fig. 5.52 XRD pattern for the NiCr coating with Al$_2$O$_3$ top coat on T91 steel subjected to the cyclic oxidation in Na$_2$SO$_4$-60%V$_2$O$_5$ environment at 750 °C for 50 cycles.

Fig. 5.53 FE-SEM/EDS analysis of the bare and NiCr coated T91 boiler steel subjected to the cyclic oxidation in Na$_2$SO$_4$-60%V$_2$O$_5$ environment at 750 °C for 50 cycles: (a) bare T91 steel; (b) as-deposited NiCr coating and (c) heat treated NiCr coating.

Fig. 5.54 FE-SEM/EDS analysis of the NiCr coated T91 steel subjected to the cyclic oxidation in Na$_2$SO$_4$-60%V$_2$O$_5$ environment at 750 °C for 50 cycles: (a) sealed NiCr coating; (b) NiCr coating with Cr$_2$O$_3$ top coat and (c) NiCr coating with Al$_2$O$_3$ top coat.

Fig. 5.55 SEM micrograph and variation in elemental composition across the cross-section of bare T91 steel subjected to the cyclic oxidation in Na$_2$SO$_4$-60%V$_2$O$_5$ environment at 750 °C for 50 cycles.

Fig. 5.56 SEM micrograph and variation in elemental composition across the cross-section of the HVOF sprayed NiCr coating on T91 steel subjected to the cyclic oxidation in Na$_2$SO$_4$-60%V$_2$O$_5$ environment at 750 °C for 50 cycles.

Fig. 5.57 SEM micrograph and variation in elemental composition across the cross-section of the heat treated NiCr coating on T91 steel subjected to the cyclic oxidation in Na$_2$SO$_4$-60%V$_2$O$_5$ environment at 750 °C for 50 cycles.

Fig. 5.58 SEM micrograph and variation in elemental composition across the cross-section of the sealed NiCr coating on T91 steel subjected to the cyclic oxidation in Na$_2$SO$_4$-60%V$_2$O$_5$ environment at 750 °C for 50 cycles.
Fig. 5.59 SEM micrograph and variation in elemental composition across the cross-section of the NiCr duplex coating with Cr$_2$O$_3$ top coat on T91 steel subjected to the cyclic oxidation in Na$_2$SO$_4$-60%V$_2$O$_5$ environment at 750 °C for 50 cycles.

Fig. 5.60 SEM micrograph and variation in elemental composition across the cross-section of the NiCr duplex coating with Al$_2$O$_3$ top coat on T91 steel subjected to the cyclic oxidation in Na$_2$SO$_4$-60%V$_2$O$_5$ environment at 750 °C for 50 cycles.

Fig. 5.61 Composition image and X-ray mappings along the cross-section of the T91 steel subjected to Na$_2$SO$_4$-60%V$_2$O$_5$ environment at 750 °C for 50 cycles.

Fig. 5.62 Composition image and X-ray mappings along the cross-section of the HVOF sprayed NiCr coating on T91 steel subjected to Na$_2$SO$_4$-60%V$_2$O$_5$ environment at 750 °C for 50 cycles.

Fig. 5.63 Composition image and X-ray mappings along the cross-section of the heat treated NiCr coating on T91 steel subjected to Na$_2$SO$_4$-60%V$_2$O$_5$ environment at 750 °C for 50 cycles.

Fig. 5.64 Composition image and X-ray mappings along the cross-section of the sealed NiCr coating on T91 steel subjected to Na$_2$SO$_4$-60%V$_2$O$_5$ environment at 750 °C for 50 cycles.

Fig. 5.65 Composition image and X-ray mappings along the cross-section of the NiCr duplex coating with Cr$_2$O$_3$ top coat on T91 steel subjected to the cyclic oxidation in Na$_2$SO$_4$-60%V$_2$O$_5$ environment at 750 °C for 50 cycles.

Fig. 5.66 Composition image and X-ray mappings along the cross-section of the NiCr duplex coating with Al$_2$O$_3$ top coat on T91 steel subjected to the cyclic oxidation in Na$_2$SO$_4$-60%V$_2$O$_5$ environment at 750 °C for 50 cycles.

Fig. 5.67 Macrographs of the Cr$_3$C$_2$-NiCr coated T91 steel samples subjected to hot corrosion in Na$_2$SO$_4$-60%V$_2$O$_5$ environment at 750 °C for 50 cycles: (a) as-deposited Cr$_3$C$_2$-NiCr coating; (b) heat treated Cr$_3$C$_2$-NiCr coating; (c) sealed Cr$_3$C$_2$-NiCr coating; (d) Cr$_3$C$_2$-NiCr coating with Cr$_2$O$_3$ top coat and (e) Cr$_3$C$_2$-NiCr coating with Al$_2$O$_3$ top coat.
Fig. 5.68 Weight gain/area vs. number of cycles plot for the bare and Cr$_3$C$_2$-NiCr coated T91 steel subjected to molten salt environment (Na$_2$SO$_4$-60%V$_2$O$_5$) at 750 °C for 50 cycles.

Fig. 5.69 (Weight gain/area)2 vs. number of cycles plot for the bare and Cr$_3$C$_2$-NiCr coated T91 steel subjected to molten salt environment (Na$_2$SO$_4$-60%V$_2$O$_5$) at 750 °C for 50 cycles.

Fig. 5.70 XRD pattern for HVOF spray Cr$_3$C$_2$-NiCr coated T91 boiler steel subjected to the cyclic oxidation in Na$_2$SO$_4$-60%V$_2$O$_5$ environment at 750 °C for 50 cycles.

Fig. 5.71 XRD pattern for the heat treated Cr$_3$C$_2$-NiCr coating on T91 steel subjected to the cyclic oxidation in Na$_2$SO$_4$-60%V$_2$O$_5$ environment at 750 °C for 50 cycles.

Fig. 5.72 XRD pattern for the sealed Cr$_3$C$_2$-NiCr coating on T91 steel subjected to the cyclic oxidation in Na$_2$SO$_4$-60%V$_2$O$_5$ environment at 750 °C for 50 cycles.

Fig. 5.73 XRD pattern for the Cr$_3$C$_2$-NiCr coating with Cr$_2$O$_3$ top coat on T91 steel subjected to the cyclic oxidation in Na$_2$SO$_4$-60%V$_2$O$_5$ environment at 750 °C for 50 cycles.

Fig. 5.74 XRD pattern for the Cr$_3$C$_2$-NiCr coating with Al$_2$O$_3$ top coat on T91 steel subjected to the cyclic oxidation in Na$_2$SO$_4$-60%V$_2$O$_5$ environment at 750 °C for 50 cycles.

Fig. 5.75 FE-SEM/EDS analysis of the Cr$_3$C$_2$-NiCr coated T91 boiler steel subjected to the cyclic oxidation in Na$_2$SO$_4$-60%V$_2$O$_5$ environment at 750 °C for 50 cycles: (a) as-deposited Cr$_3$C$_2$-NiCr coating; (b) heat treated Cr$_3$C$_2$-NiCr coating and (c) sealed Cr$_3$C$_2$-NiCr coating.

Fig. 5.76 FE-SEM/EDS analysis of the Cr$_3$C$_2$-NiCr coated T91 steel subjected to the cyclic oxidation in Na$_2$SO$_4$-60%V$_2$O$_5$ environment at 750 °C for 50 cycles: (a) Cr$_3$C$_2$-NiCr coating with Cr$_2$O$_3$ top coat and (b) Cr$_3$C$_2$-NiCr coating with Al$_2$O$_3$ top coat.
Fig. 5.77 SEM micrograph and variation in elemental composition across the cross-section of the HVOF sprayed Cr$_3$C$_2$-NiCr coating on T91 steel subjected to the cyclic oxidation in Na$_2$SO$_4$-60%V$_2$O$_5$ environment at 750 °C for 50 cycles.

Fig. 5.78 SEM micrograph and variation in elemental composition across the cross-section of the heat treated Cr$_3$C$_2$-NiCr coating on T91 steel subjected to the cyclic oxidation in Na$_2$SO$_4$-60%V$_2$O$_5$ environment at 750 °C for 50 cycles.

Fig. 5.79 SEM micrograph and variation in elemental composition across the cross-section of the sealed Cr$_3$C$_2$-NiCr coating on T91 steel subjected to the cyclic oxidation in Na$_2$SO$_4$-60%V$_2$O$_5$ environment at 750 °C for 50 cycles.

Fig. 5.80 SEM micrograph and variation in elemental composition across the cross-section for the Cr$_3$C$_2$-NiCr coating with Cr$_2$O$_3$ top coat on T91 steel subjected to the cyclic oxidation in Na$_2$SO$_4$-60%V$_2$O$_5$ environment at 750 °C for 50 cycles.

Fig. 5.81 SEM micrograph and variation in elemental composition across the cross-section for the Cr$_3$C$_2$-NiCr coating with Al$_2$O$_3$ top coat on T91 steel subjected to the cyclic oxidation in Na$_2$SO$_4$-60%V$_2$O$_5$ environment at 750 °C for 50 cycles.

Fig. 5.82 Composition image and X-ray mappings along the cross-section of the HVOF sprayed Cr$_3$C$_2$-NiCr coating on T91 steel subjected to Na$_2$SO$_4$-60%V$_2$O$_5$ environment at 750 °C for 50 cycles.

Fig. 5.83 Composition image and X-ray mappings along the cross-section of the heat treated Cr$_3$C$_2$-NiCr coating on T91 steel subjected to Na$_2$SO$_4$-60%V$_2$O$_5$ environment at 750 °C for 50 cycles.

Fig. 5.84 Composition image and X-ray mappings along the cross-section of the sealed Cr$_3$C$_2$-NiCr coating on T91 steel subjected to Na$_2$SO$_4$-60%V$_2$O$_5$ environment at 750 °C for 50 cycles.
Fig. 5.85 Composition image and X-ray mappings along the cross-section for the Cr_3C_2-NiCr coating with Cr_2O_3 top coat on T91 steel subjected to $\text{Na}_2\text{SO}_4-60\%\text{V}_2\text{O}_5$ environment at 750 °C for 50 cycles.

Fig. 5.86 Composition image and X-ray mappings along the cross-section for the Cr_3C_2-NiCr coating with Al_2O_3 top coat on T91 steel subjected to $\text{Na}_2\text{SO}_4-60\%\text{V}_2\text{O}_5$ environment at 750 °C for 50 cycles.

Fig. 5.87 Macrographs of the T91 steel samples subjected to hot corrosion in $\text{Na}_2\text{SO}_4-60\%\text{V}_2\text{O}_5$ environment at 900 °C for 50 cycles: (a) bare T91 steel; (b) as-deposited NiCr coating; (c) heat treated NiCr coating; (d) sealed NiCr coating; (e) NiCr coating with Cr_2O_3 top coat and (f) NiCr coating with Al_2O_3 top coat.

Fig. 5.88 Weight gain/area vs. number of cycles plot for the bare and NiCr coated T91 steel subjected to molten salt environment ($\text{Na}_2\text{SO}_4-60\%\text{V}_2\text{O}_5$) at 900 °C for 50 cycles.

Fig. 5.89 $(\text{Weight gain/area})^2$ vs. number of cycles plot for the bare and NiCr coated T91 steel subjected to molten salt environment ($\text{Na}_2\text{SO}_4-60\%\text{V}_2\text{O}_5$) at 900 °C for 50 cycles.

Fig. 5.90 XRD pattern for bare T91 boiler steel subjected to the cyclic oxidation in $\text{Na}_2\text{SO}_4-60\%\text{V}_2\text{O}_5$ environment at 900 °C.

Fig. 5.91 XRD pattern for HVOF spray NiCr coated T91 boiler steel subjected to the cyclic oxidation in $\text{Na}_2\text{SO}_4-60\%\text{V}_2\text{O}_5$ environment at 900 °C for 50 cycles.

Fig. 5.92 XRD pattern for the heat treated NiCr coating on T91 steel subjected to the cyclic oxidation in $\text{Na}_2\text{SO}_4-60\%\text{V}_2\text{O}_5$ environment at 900 °C for 50 cycles.

Fig. 5.93 XRD pattern for the sealed NiCr coating on T91 steel subjected to the cyclic oxidation in $\text{Na}_2\text{SO}_4-60\%\text{V}_2\text{O}_5$ environment at 900 °C for 50 cycles.
Fig. 5.94 XRD pattern for the NiCr coating with Cr₂O₃ top coat on T91 steel subjected to the cyclic oxidation in Na₂SO₄-60%V₂O₅ environment at 900 °C for 50 cycles.

Fig. 5.95 XRD pattern for the NiCr coating with Al₂O₃ top coat on T91 steel subjected to the cyclic oxidation in Na₂SO₄-60%V₂O₅ environment at 900 °C for 50 cycles.

Fig. 5.96 FE-SEM/EDS analysis of the bare and coated T91 steel subjected to the cyclic oxidation in Na₂SO₄-60%V₂O₅ environment at 900 °C for 50 cycles: (a) bare T91 steel; (b) as-deposited NiCr coating and (c) heat treated NiCr coating.

Fig. 5.97 FE-SEM/EDS analysis of the NiCr coated T91 steel subjected to the cyclic oxidation in Na₂SO₄-60%V₂O₅ environment at 900 °C for 50 cycles: (a) sealed NiCr coating; (b) NiCr coating with Cr₂O₃ top coat and (c) NiCr coating with Al₂O₃ top coat.

Fig. 5.98 SEM micrograph and variation in elemental composition across the cross-section of T91 steel subjected to the cyclic oxidation in Na₂SO₄-60%V₂O₅ environment at 900 °C for 50 cycles.

Fig. 5.99 SEM micrograph and variation in elemental composition across the cross-section of the HVOF sprayed NiCr coating on T91 steel subjected to the cyclic oxidation in Na₂SO₄-60%V₂O₅ environment at 900 °C for 50 cycles.

Fig. 5.100 SEM micrograph and variation in elemental composition across the cross-section of the heat treated NiCr coating on T91 steel subjected to the cyclic oxidation in Na₂SO₄-60%V₂O₅ environment at 900 °C for 50 cycles.

Fig. 5.101 SEM micrograph and variation in elemental composition across the cross-section of the sealed NiCr coating on T91 steel subjected to the cyclic oxidation in Na₂SO₄-60%V₂O₅ environment at 900 °C for 50 cycles.

Fig. 5.102 SEM micrograph and variation in elemental composition across the cross-section for the NiCr coating with Cr₂O₃ top coat on T91 steel subjected to the cyclic oxidation in Na₂SO₄-60%V₂O₅ environment at 900 °C for 50 cycles.
Fig. 5.103 SEM micrograph and variation in elemental composition across the cross-section for the NiCr coating with Al₂O₃ top coat on T91 steel subjected to the cyclic oxidation in Na₂SO₄-60%V₂O₅ environment at 900 °C for 50 cycles.

Fig. 5.104 Composition image and X-ray mappings along the cross-section of the bare T91 steel subjected to Na₂SO₄-60%V₂O₅ environment at 900 °C for 21 cycles.

Fig. 5.105 Composition image and X-ray mappings along the cross-section of the HVOF sprayed NiCr coating on T91 steel subjected to Na₂SO₄-60%V₂O₅ environment at 900 °C for 50 cycles.

Fig. 5.106 Composition image and X-ray mappings along the cross-section of the heat treated NiCr coating on T91 steel subjected to Na₂SO₄-60%V₂O₅ environment at 900 °C for 50 cycles.

Fig. 5.107 Composition image and X-ray mappings along the cross-section for the sealed NiCr coating on T91 steel subjected to Na₂SO₄-60%V₂O₅ environment at 900 °C for 50 cycles.

Fig. 5.108 Composition image and X-ray mappings along the cross-section for the NiCr coating with Cr₂O₃ top coat on T91 steel subjected to Na₂SO₄-60%V₂O₅ environment at 900 °C for 50 cycles.

Fig. 5.109 Composition image and X-ray mappings along the cross-section for the NiCr coating with Al₂O₃ top coat on T91 steel subjected to Na₂SO₄-60%V₂O₅ environment at 900 °C for 50 cycles.

Fig. 5.110 Macrographs of the Cr₃C₂-NiCr coated T91 steel samples subjected to hot corrosion in Na₂SO₄-60%V₂O₅ environment at 900 °C for 50 cycles: (a) as-deposited Cr₃C₂-NiCr coating; (b) heat treated Cr₃C₂-NiCr coating; (c) sealed Cr₃C₂-NiCr coating; (d) Cr₃C₂-NiCr coating with Cr₂O₃ top coat and (e) Cr₃C₂-NiCr coating with Al₂O₃ top coat.

Fig. 5.111 Weight gain/area vs. number of cycles plot for the bare and Cr₃C₂-NiCr coated T91 steel subjected to molten salt environment (Na₂SO₄-60%V₂O₅) at 900 °C for 50 cycles.
Fig. 5.112 (Weight gain/area)2 vs. number of cycles plot for the bare and Cr$_3$C$_2$-NiCr coated T91 steel subjected to molten salt environment (Na$_2$SO$_4$-60%V$_2$O$_5$) at 900 °C for 50 cycles.

Fig. 5.113 XRD pattern for HVOF spray Cr$_3$C$_2$-NiCr coated T91 boiler steel subjected to the cyclic oxidation in Na$_2$SO$_4$-60%V$_2$O$_5$ environment at 900 °C for 50 cycles.

Fig. 5.114 XRD pattern for the heat treated Cr$_3$C$_2$-NiCr coating on T91 steel subjected to the cyclic oxidation in Na$_2$SO$_4$-60%V$_2$O$_5$ environment at 900 °C for 50 cycles.

Fig. 5.115 XRD pattern for the sealed Cr$_3$C$_2$-NiCr coating on T91 steel subjected to the cyclic oxidation in Na$_2$SO$_4$-60%V$_2$O$_5$ environment at 900 °C for 50 cycles.

Fig. 5.116 XRD pattern for the Cr$_3$C$_2$-NiCr coating with Cr$_2$O$_3$ top coat on T91 steel subjected to the cyclic oxidation in Na$_2$SO$_4$-60%V$_2$O$_5$ environment at 900 °C for 50 cycles.

Fig. 5.117 XRD pattern for the Cr$_3$C$_2$-NiCr coating with Al$_2$O$_3$ top coat on T91 steel subjected to the cyclic oxidation in Na$_2$SO$_4$-60%V$_2$O$_5$ environment at 900 °C for 50 cycles.

Fig. 5.118 FE-SEM/EDS analysis of the bare and Cr$_3$C$_2$-NiCr coated T91 steel subjected to the cyclic oxidation in Na$_2$SO$_4$-60%V$_2$O$_5$ environment at 900 °C for 50 cycles: (a) as-deposited Cr$_3$C$_2$-NiCr coating; (b) heat treated Cr$_3$C$_2$-NiCr coating and (c) sealed Cr$_3$C$_2$-NiCr coating.

Fig. 5.119 FE-SEM/EDS analysis of the Cr$_3$C$_2$-NiCr coated T91 steel subjected to the cyclic oxidation in Na$_2$SO$_4$-60%V$_2$O$_5$ environment at 900 °C for 50 cycles: (a) Cr$_3$C$_2$-NiCr coating with Cr$_2$O$_3$ top coat and (b) Cr$_3$C$_2$-NiCr coating with Al$_2$O$_3$ top coat.

Fig. 5.120 SEM micrograph and variation in elemental composition across the cross-section of Cr$_3$C$_2$-NiCr coated T91 steel subjected to the cyclic oxidation in Na$_2$SO$_4$-60%V$_2$O$_5$ environment at 900 °C for 50 cycles.
Fig. 5.121 SEM micrograph and variation in elemental composition across the cross-section of the heat treated Cr$_3$C$_2$-NiCr coating on T91 steel subjected to the cyclic oxidation in Na$_2$SO$_4$-60%V$_2$O$_5$ environment at 900 °C for 50 cycles.

Fig. 5.122 SEM micrograph and variation in elemental composition across the cross-section of the sealed Cr$_3$C$_2$-NiCr coating on T91 steel subjected to the cyclic oxidation in Na$_2$SO$_4$–60%V$_2$O$_5$ environment at 900 °C for 50 cycles.

Fig. 5.123 SEM micrograph and variation in elemental composition across the cross-section for the Cr$_3$C$_2$-NiCr coating with Cr$_2$O$_3$ top coat on T91 steel subjected to the cyclic oxidation in Na$_2$SO$_4$-60%V$_2$O$_5$ environment at 900 °C for 50 cycles.

Fig. 5.124 SEM micrograph and variation in elemental composition across the cross-section for the Cr$_3$C$_2$-NiCr coating with Al$_2$O$_3$ top coat on T91 steel subjected to the cyclic oxidation in Na$_2$SO$_4$-60%V$_2$O$_5$ environment at 900 °C for 50 cycles.

Fig. 5.125 Composition image and X-ray mappings along the cross-section for the as-deposited Cr$_3$C$_2$-NiCr coating on T91 steel subjected to the cyclic oxidation in Na$_2$SO$_4$-60%V$_2$O$_5$ environment at 900 °C.

Fig. 5.126 Composition image and X-ray mappings along the cross-section for the heat treated Cr$_3$C$_2$-NiCr coating on T91 steel subjected to the cyclic oxidation in Na$_2$SO$_4$-60%V$_2$O$_5$ environment at 900 °C for 50 cycles.

Fig. 5.127 Composition image and X-ray mappings along the cross-section for the sealed Cr$_3$C$_2$-NiCr coating on T91 steel subjected to the cyclic oxidation in Na$_2$SO$_4$-60%V$_2$O$_5$ environment at 900 °C for 50 cycles.

Fig. 5.128 Composition image and X-ray mappings along the cross-section for the Cr$_3$C$_2$-NiCr coating with Cr$_2$O$_3$ top coat on T91 steel subjected to Na$_2$SO$_4$-60%V$_2$O$_5$ environment at 900 °C for 50 cycles.
Fig. 5.129 Composition image and X-ray mappings along the cross-section for the Cr$_3$C$_2$-NiCr coating with Al$_2$O$_3$ top coat on T91 steel subjected to Na$_2$SO$_4$–60%V$_2$O$_5$ environment at 900 °C for 50 cycles.

Fig. 5.130 Bar chart showing cumulative weight gain per unit area for NiCr and Cr$_3$C$_2$-NiCr coated T91 steel subjected to molten salt environment at 600 °C for 50 cycles.

Fig. 5.131 Bar chart showing cumulative weight gain per unit area for NiCr and Cr$_3$C$_2$-NiCr coated T91 steel subjected to molten salt environment at 750 °C for 50 cycles.

Fig. 5.132 SEM micrograph along the cross-section of HVOF spray NiCr coating on T91 boiler steel subjected to the cyclic oxidation in Na$_2$SO$_4$-60%V$_2$O$_5$ environment at 750°C for 50 cycles.

Fig. 5.133 SEM micrograph along the cross-section of HVOF spray Cr$_3$C$_2$-NiCr coating on T91 boiler steel subjected to the cyclic oxidation in Na$_2$SO$_4$-60%V$_2$O$_5$ environment at 750°C for 50 cycles.

Fig. 5.134 Schematic diagram showing probable hot corrosion mechanism for T91 boiler steel exposed to molten salt (Na$_2$SO$_4$-60%V$_2$O$_5$) at 900 °C.

Fig. 5.135 Bar chart showing cumulative weight gain per unit area for NiCr and Cr$_3$C$_2$-NiCr coated T91 steel subjected to molten salt environment at 900 °C for 50 cycles.

Fig. 5.136 Schematic diagram showing probable hot corrosion mechanism for HVOF sprayed NiCr/Cr$_3$C$_2$-NiCr coating on T91 boiler steel exposed to molten salt (Na$_2$SO$_4$-60%V$_2$O$_5$) at 900 °C for 50 cycles.

Fig. 5.137 Schematic illustration of some of the main aspects of the development of cracks and oozing out of material from beneath during hot corrosion of the coated steel exposed to molten salt (Na$_2$SO$_4$-60%V$_2$O$_5$) at 900 °C.
Fig. 6.1 Macrographs of the T91 steel samples exposed to a platen superheater of the coal fired boiler for 1500 h: (a) bare T91 steel; (b) as-deposited NiCr coating; (c) heat treated NiCr coating; (d) sealed NiCr coating; (e) NiCr coating with Cr$_2$O$_3$ top coat and (f) NiCr coating with Al$_2$O$_3$ top coat.

Fig. 6.2 Bar chart showing cumulative weight gain per unit area for bare and NiCr coated T91 steel exposed to a platen superheater of the coal fired boiler for 1500 h at 900 °C.

Fig. 6.3 Bar chart indicating the thickness change in mils per year (mpy) by the bare and NiCr coated T91 steel exposed to a platen superheater of the coal fired boiler for 1500 h at 900 °C.

Fig. 6.4 BSE images for the bare and NiCr coated T91 steel after exposure to platen superheater zone of the coal fired boiler for 1500 h at 900 °C: (a) bare T91 steel; (b) as-deposited NiCr coating; (c) heat treated NiCr coating; (d) sealed NiCr coating; (e) NiCr coating with Cr$_2$O$_3$ top coat and (f) NiCr coating with Al$_2$O$_3$ top coat.

Fig. 6.5 XRD pattern for the T91 steel exposed to a platen superheater of the coal fired boiler for 1500 h at 900 °C.

Fig. 6.6 XRD pattern for the HVOF sprayed NiCr coating on T91 steel exposed to a platen superheater of the coal fired boiler for 1500 h at 900 °C.

Fig. 6.7 XRD pattern for the heat treated NiCr coating on T91 steel exposed to a platen superheater of the coal fired boiler for 1500 h at 900 °C.

Fig. 6.8 XRD pattern for the sealed NiCr coating on T91 steel exposed to a platen superheater of the coal fired boiler for 1500 h at 900 °C.

Fig. 6.9 XRD pattern for the NiCr coating with Cr$_2$O$_3$ top coat on T91 steel exposed to a platen superheater of the coal fired boiler for 1500 h at 900 °C.
Fig. 6.10 XRD pattern for the NiCr coating with Al₂O₃ top coat on T91 steel exposed to a platen superheater of the coal fired boiler for 1500 h at 900 °C.

Fig. 6.11 FE-SEM/EDS analysis for the bare and NiCr coated T91 steel exposed to a platen superheater of the coal fired boiler for 1500 h at 900 °C: (a) bare T91 steel; (b) as-deposited NiCr coating and (c) heat treated NiCr coating.

Fig. 6.12 FE-SEM/EDS analysis for the NiCr coated T91 steel exposed to a platen superheater of the coal fired boiler for 1500 h at 900 °C: (a) sealed NiCr coating; (b) NiCr coating with Cr₂O₃ top coat and (c) NiCr coating with Al₂O₃ top coat.

Fig. 6.13 SEM micrograph and variation in elemental composition across the cross-section of the T91 steel exposed to a platen superheater of the coal fired boiler for 1500 h at 900 °C.

Fig. 6.14 SEM micrograph and variation in elemental composition across the cross-section of the HVOF sprayed NiCr coating on T91 steel exposed to a platen superheater of the coal fired boiler for 1500 h at 900 °C.

Fig. 6.15 SEM micrograph and variation in elemental composition across the cross-section of the heat treated NiCr coating on T91 steel exposed to a platen superheater of the coal fired boiler for 1500 h at 900 °C.

Fig. 6.16 SEM micrograph and variation in elemental composition across the cross-section of the sealed NiCr coating on T91 steel exposed to a platen superheater of the coal fired boiler for 1500 h at 900 °C.

Fig. 6.17 SEM micrograph and variation in elemental composition across the cross-section of the NiCr coating with Cr₂O₃ top coat on T91 steel exposed to a platen superheater of the coal fired boiler for 1500 h at 900 °C.

Fig. 6.18 SEM micrograph and variation in elemental composition across the cross-section of the NiCr coating with Al₂O₃ top coat on T91 steel exposed to a platen superheater of the coal fired boiler for 1500 h at 900 °C.
Fig. 6.19 Composition image and X-ray mappings across the cross-section of the T91 steel exposed to a platen superheater of the coal fired boiler for 1500 h.

Fig. 6.20 Composition image and X-ray mappings across the cross-section of the NiCr coating on T91 steel exposed to a platen superheater of the coal fired boiler for 1500 h.

Fig. 6.21 Composition image and X-ray mappings across the cross-section of the heat treated NiCr coating on T91 steel exposed to a platen superheater of the coal fired boiler for 1500 h.

Fig. 6.22 Composition image and X-ray mappings across the cross-section of the sealed NiCr coating on T91 steel exposed to a platen superheater of the coal fired boiler for 1500 h.

Fig. 6.23 Composition image and X-ray mappings across the cross-section for the NiCr coating with Cr$_2$O$_3$ top coat on T91 steel exposed to a platen superheater of the coal fired boiler for 1500 h.

Fig. 6.24 Composition image and X-ray mappings across the cross-section for the NiCr coating with Al$_2$O$_3$ top coat on T91 steel exposed to a platen superheater of the coal fired boiler for 1500 h.

Fig. 6.25 Macrographs of the Cr$_3$C$_2$-NiCr coated T91 steel samples exposed to a platen superheater of the coal fired boiler for 1500 h: (a) as-deposited Cr$_3$C$_2$-NiCr coating; (b) heat treated Cr$_3$C$_2$-NiCr coating; (c) sealed Cr$_3$C$_2$-NiCr coating; (d) Cr$_3$C$_2$-NiCr coating with Cr$_2$O$_3$ top coat and (e) Cr$_3$C$_2$-NiCr coating with Al$_2$O$_3$ top coat.

Fig. 6.26 Bar chart showing cumulative weight gain per unit area for bare and Cr$_3$C$_2$-NiCr coated T91 steel exposed to a platen superheater of the coal fired boiler for 1500 h at 900 °C.

Fig. 6.27 Bar chart indicating the thickness change in mils per year (mpy) by the bare and Cr$_3$C$_2$-NiCr coated T91 steel exposed to a platen superheater of the coal fired boiler for 1500 h at 900 °C.
Fig. 6.28 BSE images for the Cr$_3$C$_2$-NiCr coated T91 steel after exposure to platen superheater zone of the coal fired boiler for 1500 h at 900 °C: (a) as-deposited Cr$_3$C$_2$-NiCr coating; (b) heat treated Cr$_3$C$_2$-NiCr coating; (c) sealed Cr$_3$C$_2$-NiCr coating; (d) Cr$_3$C$_2$-NiCr coating with Cr$_2$O$_3$ top coat and (e) Cr$_3$C$_2$-NiCr coating with Al$_2$O$_3$ top coat.

Fig. 6.29 XRD pattern for the HVOF sprayed Cr$_3$C$_2$-NiCr coating on T91 steel exposed to a platen superheater of the coal fired boiler for 1500 h at 900 °C.

Fig. 6.30 XRD pattern for the heat treated Cr$_3$C$_2$-NiCr coating on T91 steel exposed to a platen superheater of the coal fired boiler for 1500 h at 900 °C.

Fig. 6.31 XRD pattern for the sealed Cr$_3$C$_2$-NiCr coating on T91 steel exposed to a platen superheater of the coal fired boiler for 1500 h at 900 °C.

Fig. 6.32 XRD pattern for the Cr$_3$C$_2$-NiCr coating with Cr$_2$O$_3$ top coat on T91 steel exposed to a platen superheater of the coal fired boiler for 1500 h at 900 °C.

Fig. 6.33 XRD pattern for the Cr$_3$C$_2$-NiCr coating with Al$_2$O$_3$ top coat on T91 steel exposed to a platen superheater of the coal fired boiler for 1500 h at 900 °C.

Fig. 6.34 FE-SEM/EDS analysis for the Cr$_3$C$_2$-NiCr coated T91 steel exposed to a platen superheater of the coal fired boiler for 1500 h at 900 °C: (a) as-deposited Cr$_3$C$_2$-NiCr coating; (b) heat treated Cr$_3$C$_2$-NiCr coating and (c) sealed Cr$_3$C$_2$-NiCr coating.

Fig. 6.35 FE-SEM/EDS analysis for the Cr$_3$C$_2$-NiCr coated T91 steel exposed to a platen superheater of the coal fired boiler for 1500 h at 900 °C: (a) Cr$_3$C$_2$-NiCr coating with Cr$_2$O$_3$ top coat and (b) Cr$_3$C$_2$-NiCr coating with Al$_2$O$_3$ top coat.

Fig. 6.36 SEM micrograph and variation in elemental composition across the cross-section of the HVOF sprayed Cr$_3$C$_2$-NiCr coating on T91 steel exposed to a platen superheater of the coal fired boiler for 1500 h at 900 °C.
Fig. 6.37 SEM micrograph and variation in elemental composition across the cross-section of the heat treated Cr$_3$C$_2$-NiCr coating on T91 steel exposed to a platen superheater of the coal fired boiler for 1500 h at 900 °C.

Fig. 6.38 SEM micrograph and variation in elemental composition across the cross-section of the sealed Cr$_3$C$_2$-NiCr coating on T91 steel exposed to a platen superheater of the coal fired boiler for 1500 h at 900 °C.

Fig. 6.39 SEM micrograph and variation in elemental composition across the cross-section of the Cr$_3$C$_2$-NiCr coating with Cr$_2$O$_3$ top coat on T91 steel exposed to a platen superheater of the coal fired boiler for 1500 h at 900 °C.

Fig. 6.40 SEM micrograph and variation in elemental composition across the cross-section of the Cr$_3$C$_2$-NiCr coating with Al$_2$O$_3$ top coat on T91 steel exposed to a platen superheater of the coal fired boiler for 1500 h at 900 °C.

Fig. 6.41 Composition image and X-ray mappings across the cross-section of the Cr$_3$C$_2$-NiCr coating on T91 steel exposed to a platen superheater of the coal fired boiler for 1500 h.

Fig. 6.42 Composition image and X-ray mappings across the cross-section of the heat treated Cr$_3$C$_2$-NiCr coating on T91 steel exposed to a platen superheater of the coal fired boiler for 1500 h.

Fig. 6.43 Composition image and X-ray mappings across the cross-section of the sealed Cr$_3$C$_2$-NiCr coating on T91 steel exposed to a platen superheater of the coal fired boiler for 1500 h.

Fig. 6.44 Composition image and X-ray mappings across the cross-section for the Cr$_3$C$_2$-NiCr coating with Cr$_2$O$_3$ top coat on T91 steel exposed to a platen superheater of the coal fired boiler for 1500 h.
Fig. 6.45 Composition image and X-ray mappings across the cross-section for the Cr$_3$C$_2$-NiCr coating with Al$_2$O$_3$ top coat on T91 steel exposed to a platen superheater of the coal fired boiler for 1500 h.

Fig. 6.46 Schematic diagram showing probable erosion-corrosion mode for the bare T91boiler steel subjected to actual boiler environment at 900°C for 1500 hours.

Fig. 6.47 Bar chart indicating the thickness change in mils per year (mpy) by the bare and coated steel exposed to a platen superheater of the coal fired boiler for 1500 h at 900 °C.

Fig. 6.48 Schematic diagram illustrating the high temperature oxidation mode for the HVOF sprayed Ni-20Cr coating on T91 boiler steel exposed to boiler environment at 900 °C.

Fig. 6.49 Schematic diagram showing probable erosion-corrosion mode for the HVOF sprayed Cr$_3$C$_2$-NiCr coating on T91 boiler steel subjected to actual boiler environment at 900°C for 1500 hours.

Fig. 7.1 Bar chart showing cumulative weight gain per unit area for bare and coated T91 steel subjected to molten salt environment at 600, 750 and 900 °C for 50 cycles.

Fig. 7.2 Bar chart indicating the thickness change in mils per year (mpy) by the bare and coated steel exposed to a platen superheater of the coal fired boiler for 1500 h at 900 °C.