The stability of steady convective motion induced by internal energy sources in a fluid is investigated. The fluid is contained in a channel enclosed either between two planes or two concentric cylinders. Both walls of the channel are kept at constant and equal temperatures. Heat generating bodies are distributed throughout the fluid. The resulting flow is assumed to be parallel to the bounding walls and the study is restricted to two dimensional disturbances. The spectral collocation method based on Chebyshev polynomials is employed to solve the resulting equations. The results are presented and discussed in terms of marginal and critical curves of Grashof number and the secondary flow characteristics such as wavenumber and wavespeed. The results are found to greatly depend on temperature dependent viscosity, magnetic field, sidewall motion, channel inclination, nonlinear density dependence of fluid on temperature, wall curvature, heat source strength, heat source distribution and Darcy friction.