Contra-$\pi g\alpha$-Continuous
&
Almost Contra-$\pi g\alpha$-Continuous Functions

- Introduction
- Contra-$\pi g\alpha$-Continuous Functions
- Almost Contra-$\pi g\alpha$-Continuous Functions
- Functions With $\pi g\alpha$-Closed Graphs
CHAPTER IV

CONTRA-\(\pi\alpha\)-CONTINUOUS
AND

ALMOST CONTRA-\(\pi\alpha\)-CONTINUOUS FUNCTIONS

4.1 Introduction

Dontchev [36] introduced the notion of contra-continuity and obtained some results concerning compactness, S-closedness and strong-S-closedness. Various topologists introduced new generalizations of contra-continuity in [22, 41, 68, 69] and generalizations of almost contra-continuity in [49, 140, 141]. Long[89], Dube et al.[45] and Jankovic[73] introduced the notions of closed graphs, semi-closed graphs and \(\alpha\)-closed graphs respectively. In this chapter, we introduce the concept of contra-\(\pi\alpha\)-continuous functions, almost contra-\(\pi\alpha\)-continuous functions, \(\pi\alpha\)-closed graphs, contra-\(\pi\alpha\)-closed graphs, \(\pi\alpha\)-regular graphs and study their properties.

4.2 Contra-\(\pi\alpha\)-Continuous Functions

In this section, we introduce and study the concept of contra-\(\pi\alpha\)-continuous functions which is weaker than contra-\(\alpha\)-continuous, contra-\(\pi\gamma\gamma\)-continuous but stronger than contra-\(\pi\gamma\gamma\pi\)-continuous functions.

Definition 4.2.1 : A function \(f : (X,\tau) \rightarrow (Y,\sigma)\) is called contra-\(\pi\alpha\)-continuous if \(f^{-1}(V)\) is \(\pi\alpha\)-closed in \((X,\tau)\) for each open set \(V\) of \((Y,\sigma)\).

Proposition 4.2.2: i) Every contra-continuous function is contra-\(\pi\alpha\)-continuous.

ii) Every contra-\(\alpha\)-continuous function is contra-\(\pi\alpha\)-continuous.

iii) Every contra-\(\pi\gamma\gamma\)-continuous function is contra-\(\pi\alpha\)-continuous.

iv) Every contra-\(\pi\alpha\gamma\gamma\)-continuous function is contra-\(\pi\gamma\gamma\)-continuous.
Remark 4.2.3: Converse of above statements is not true as the following example shows.

Example 4.2.4: a) Let $X = \{a, b, c\}$, $\tau = \{\phi, X, \{a\}\}$, $\sigma = \{\phi, X, \{b\}, \{c\}, \{b, c\}\}$. Then the identity function $f : (X, \tau) \to (X, \sigma)$ is contra-$\pi g \alpha$-continuous but not contra-continuous.

b) Let $X = \{a, b, c, d\}$, $\tau = \{\phi, X, \{a\}, \{b\}, \{a, b\}\}$, $\sigma = \{\phi, X, \{b, c\}\}$. Then the identity function $f : (X, \tau) \to (X, \sigma)$ is contra-$\pi g \alpha$-continuous but not contra-α-continuous.

c) Let $X = \{a, b, c, d\}$, $\tau = \{\phi, X, \{a\}, \{d\}, \{a, d\}, \{a, c, d\}\}$, $\sigma = \{\phi, X, \{c\}\}$. Then the identity function $f : (X, \tau) \to (X, \sigma)$ is contra-$\pi g \alpha$-continuous but not contra-πg-continuous.

d) Let $X = \{a, b, c, d, e\}$, $\tau = \{\phi, X, \{a, b\}, \{c, d\}, \{a, b, c, d\}\}$, $\sigma = \{\phi, X, \{a\}\}$. Then the identity function $f : (X, \tau) \to (X, \sigma)$ is contra-$\pi g \alpha$-continuous but not contra-$\pi g \alpha$-continuous since $\{a\}$ is $\pi g \alpha$-closed in (X, σ) but not $\pi g \alpha$-closed in (X, τ).

We have the following diagram:

```
   perfectly continuous
      ↓
   contra-continuous
      ↓
contra-\(\alpha\)-continuous    contra-\(\pi g\)-continuous
      ↓
contra-\(\pi g \alpha\)-continuous
      ↓
contra-\(\pi g \alpha\)-continuous
      ↓
contra-\(\pi g p\)-continuous
```
Definition 4.2.5: A space (X, τ) is called
i) $\pi gamma$-locally indiscrete if every $\pi gamma$-open set is closed.
ii) a $T_{\pi gamma}$ space if every $\pi gamma$-closed set is $\pi gamma$-closed.

Theorem 4.2.6: i) If a function $f : (X, \tau) \rightarrow (Y, \sigma)$ is $\pi gamma$-continuous and (X, τ) is $\pi gamma$-locally indiscrete, then f is contra-continuous.
ii) If a function $f : (X, \tau) \rightarrow (Y, \sigma)$ is contra-$\pi gamma$-continuous and (X, τ) is a $\pi gamma$-$T_{\pi gamma}$ space, then $f : (X, \tau) \rightarrow (Y, \sigma)$ is contra-α-continuous.
iii) If a function $f : (X, \tau) \rightarrow (Y, \sigma)$ is contra-$\pi gamma$-continuous, pre-α-closed surjection and if X is a $\pi gamma$-$T_{\pi gamma}$ space, then Y is locally indiscrete.
iv) If a function $f : (X, \tau) \rightarrow (Y, \sigma)$ is contra-$\pi gamma$-continuous and X is a $\pi gamma$-space, then $f : (X, \tau) \rightarrow (Y, \sigma)$ is contra-continuous.
v) If $f : (X, \tau) \rightarrow (Y, \sigma)$ is contra-$\pi gamma$-continuous and if X is a $T_{\pi gamma}$ space, then f is contra-$\pi gamma$-continuous.

Proof: i) Let V be open in (Y, σ). By assumption, $f^{-1}(V)$ is $\pi gamma$-open in X. Since X is $\pi gamma$-locally indiscrete, $f^{-1}(V)$ is closed in X. Hence f is contra-continuous.
ii) Let V be open set in Y. By assumption, $f^{-1}(V)$ is $\pi gamma$-closed in X. Since X is a $\pi gamma$-$T_{\pi gamma}$ space, $f^{-1}(V)$ is α-closed in X. Hence f is contra-α-continuous.
iii) Let V be open in (Y, σ). By assumption, $f^{-1}(V)$ is $\pi gamma$-closed in (X, τ) and hence α-closed in X. Since f is a pre-α-closed surjection, $f(f^{-1}(V)) = V$ is α-closed in Y. Now $\text{cl}(V) = \text{cl}(\text{int}(V)) \subseteq \text{cl}(\text{int}(\text{cl}(V))) \subseteq V$ shows that V is closed in Y. Therefore Y is locally indiscrete.
iv) Let V be open set in Y. By assumption, $f^{-1}(V)$ is $\pi gamma$-closed in X. Since X is a $\pi gamma$-space, $f^{-1}(V)$ is closed in X. Hence f is contra-continuous.
v) Let V be open set in Y. By assumption, $f^{-1}(V)$ is $\pi gamma$-closed in X. Since X is a $T_{\pi gamma}$ space, $f^{-1}(V)$ is $\pi gamma$-closed in X. Hence f is contra-$\pi gamma$-continuous.

Remark 4.2.7: $\pi gamma O(X, x)$ and $\pi gamma C(X, x)$ represent $\pi gamma$-open and $\pi gamma$-closed sets in X containing x.

53
Theorem 4.2.8: Suppose $\pi\text{G}\alpha\text{O}(X,\tau)$ is closed under arbitrary unions. Then the following are equivalent for a function $f : (X,\tau) \rightarrow (Y,\sigma)$:

1. f is contra-$\pi\text{G}\alpha$-continuous.

2. For every closed subset F of Y, $f^{-1}(F) \in \pi\text{G}\alpha\text{O}(X)$.

3. For each $x \in X$ and each $F \in C(Y,f(x))$, there exists $U \in \pi\text{G}\alpha\text{O}(X, x)$ such that $f(U) \subset F$.

Proof: $1 \iff 2$ and $2 \Rightarrow 3$ is obvious.

3$\Rightarrow 2$. Let F be any closed set of Y and $x \in f^{-1}(F)$. Then $f(x) \in F$ and there exists $U_x \in \pi\text{G}\alpha\text{O}(X, x)$ such that $f(U_x) \subset F$. Therefore we obtain

$f^{-1}(F) = \bigcup \{U_x : x \in f^{-1}(F)\}$ and $f^{-1}(F)$ is $\pi\text{G}\alpha$-open.

Theorem 4.2.9: If $f : (X,\tau) \rightarrow (Y,\sigma)$ is contra-$\pi\text{G}\alpha$-continuous and U is open in X, then $f/U : (U,\tau) \rightarrow (Y,\sigma)$ is contra-$\pi\text{G}\alpha$-continuous.

Proof: Let V be closed in Y. Since $f : (X,\tau) \rightarrow (Y,\sigma)$ is contra-$\pi\text{G}\alpha$-continuous, $f^{-1}(V)$ is $\pi\text{G}\alpha$-open in X. $(f/U)^{-1}(V) = f^{-1}(V) \cap U$ is $\pi\text{G}\alpha$-open in X. By Proposition 2.2.19(i), $(f/U)^{-1}(V)$ is $\pi\text{G}\alpha$-open in U.

Theorem 4.2.10: Suppose $\pi\text{G}\alpha\text{O}(X,\tau)$ is closed under arbitrary unions. Let $f : (X,\tau) \rightarrow (Y,\sigma)$ be a function and $\{U_i : i \in I\}$ be a cover of X such that $U_i \in \pi\text{G}\alpha\text{C}(X)$ and regular open for each $i \in I$. If $f/U_i : (U_i,\tau_i) \rightarrow (Y,\sigma)$ is contra-$\pi\text{G}\alpha$-continuous for each $i \in I$, then f is contra-$\pi\text{G}\alpha$-continuous.

Proof: Suppose that F is any closed set of Y. We have

$f^{-1}(F) = \bigcup \{f^{-1}(F) \cap U_i : i \in I\} = \bigcup \{(f/U_i)^{-1}(F) : i \in I\}$. Since f/U_i is contra-$\pi\text{G}\alpha$-continuous for each $i \in I$, it follows $(f/U_i)^{-1}(F) \in \pi\text{G}\alpha\text{O}(U_i)$. By Proposition 2.2.19(ii), we have $f^{-1}(F) \in \pi\text{G}\alpha\text{O}(X)$, which implies f is contra-$\pi\text{G}\alpha$-continuous.

Theorem 4.2.11: For a function $f : (X,\tau) \rightarrow (Y,\sigma)$ the following are equivalent:

1) f is perfectly continuous.

2) f is contra-$\pi\text{G}\alpha$-continuous and regular-continuous.
3) f is contra-$\pi\alpha$-continuous and π-continuous.

Proof: Follows from Lemma 2.2.9.

Theorem 4.2.12: Suppose $\pi G_{\alpha}O(X,\tau)$ is closed under arbitrary unions. If $f : (X,\tau) \rightarrow (Y,\sigma)$ is contra-$\pi\alpha$-continuous and Y is regular, then f is $\pi\alpha$-continuous.

Proof: Let x be an arbitrary point of X and V an open set of Y containing $f(x)$. Then Y is regular implies that there exists an open set W in Y containing $f(x)$ such that $\text{cl}(W) \subseteq V$. Since f is contra-$\pi\alpha$-continuous by Theorem 4.2.8 there exists $U \in \pi G_{\alpha}O(X,x)$ such that $f(U) \subseteq \text{cl}(W)$. Then $f(U) \subseteq \text{cl}(W) \subseteq V$. Hence f is $\pi\alpha$-continuous.

Definition 4.2.13: A function $f : (X,\tau) \rightarrow (Y,\sigma)$ is said to be

i) I.C. $\pi\alpha$-continuous if for each $x \in X$ and each closed set F of Y containing $f(x)$, there exists an $\pi\alpha$-open set U in X containing x, such that $\text{int}(f(U)) \subseteq F$.

ii) $(\pi\alpha, S)$-open if $f(U) \in \text{SO}(Y)$ for every $U \in \pi G_{\alpha}O(X)$.

Theorem 4.2.14: If a function $f : (X,\tau) \rightarrow (Y,\sigma)$ is I.C. $\pi\alpha$-continuous and $(\pi\alpha, S)$-open, then f is contra-$\pi\alpha$-continuous.

Proof: Let $x \in X$ be arbitrary and $V \in C(Y, f(x))$. By hypothesis, there exists a $U \in \pi G_{\alpha}O(X, x)$ such that $\text{int}(f(U)) \subseteq V$. Since f is $(\pi\alpha, S)$-open, $f(U) \in \text{SO}(Y)$. It follows that $f(U) \subseteq \text{cl}(\text{int}(f(U))) \subseteq \text{cl}(V) \subseteq V$. By Theorem 4.2.8, f is contra-$\pi\alpha$-continuous.

Definition 4.2.15: A space X is said to be

i) strongly-S-closed[36] if every closed cover of X has a finite sub cover.

ii) mildly compact[169] if every clopen cover of X has a finite subcover.

iii) strongly-S-Lindelof if every closed cover of X has a countable subcover.

iv) $\pi\alpha$-Lindelof if every cover of X by $\pi\alpha$-open sets has a countable subcover.

Theorem 4.2.16: If $f : (X,\tau) \rightarrow (Y,\sigma)$ is contra-$\pi\alpha$-continuous and K is $\pi G_{\alpha}O$-compact relative to X, then $f(K)$ is strongly-S-closed in Y.

55
Proof: Let \{H_\alpha : \alpha \in \mathbb{V}\} be any cover of \(f(K)\) by closed sets of the subspace \(f(K)\). For each \(\alpha \in \mathbb{V}\), there exists a closed set \(K_\alpha\) of \(Y\) such that \(H_\alpha = K_\alpha \cap f(K)\). For each \(x \in K\), there exists \(\alpha(x) \in \mathbb{V}\) such that \(f(x) \in K_{\alpha(x)}\) and by Theorem 4.2.8 there exists \(U_x \in \pi GaO(X,x)\) such that \(f(U_x) \subseteq K_{\alpha(x)}\). Since the family \(\{U_x : x \in K\}\) is a cover of \(K\) by \(\pi Ga\)-open sets of \(X\), there exists a finite subset \(K_0\) of \(K\) such that \(K \subseteq \bigcup\{U_x : x \in K_0\}\). Therefore we obtain \(f(K) \subseteq \bigcup\{ f(U_x) : x \in K_0\} \subseteq \bigcup\{ K_{\alpha(x)} : x \in K_0\}\). Thus \(f(K) = \bigcup\{ H_{\alpha(x)} : x \in K_0\}\) and hence \(f(K)\) is strongly-\(S\)-closed.

Corollary 4.2.17: If \(f : (X,\tau) \rightarrow (Y,\sigma)\) is a contra-\(\pi Ga\)-continuous surjection and \(X\) is \(\pi GaO\)-compact, then \(Y\) is strongly-\(S\)-closed.

Theorems 4.2.18: a) If \(f : (X,\tau) \rightarrow (Y,\sigma)\) is a contra-\(\pi Ga\)-continuous, \(\pi\)-continuous surjection and \(X\) is mildly compact, then \(Y\) is compact.

b) If \(f : (X,\tau) \rightarrow (Y,\sigma)\) is a contra-\(\pi Ga\)-continuous surjection and \(X\) is \(\pi Ga\)-Lindelöf, then \(Y\) is strongly-\(S\)-Lindelöf.

Proof: a) Let \(\{V_\alpha : \alpha \in \mathbb{V}\}\) be an open cover of \(Y\). Since \(f\) is contra-\(\pi Ga\)-continuous and \(\pi\)-continuous, by Theorem 4.2.11 \(\{f^{-1}(V_\alpha) : \alpha \in \mathbb{V}\}\) is a clopen cover of \(X\) and there exists a finite subset \(\mathbb{V}_0\) of \(\mathbb{V}\) such that \(X = \bigcup\{f^{-1}(V_\alpha) : \alpha \in \mathbb{V}_0\}\). Since \(f\) is a surjection, \(Y = \bigcup\{V_\alpha : \alpha \in \mathbb{V}_0\}\) and hence \(Y\) is compact.

b) Let \(\{V_\alpha : \alpha \in \mathbb{V}\}\) be a closed cover of \(Y\). Since \(f\) is contra-\(\pi Ga\)-continuous, \(\{f^{-1}(V_\alpha) : \alpha \in \mathbb{V}\}\) is a \(\pi Ga\)-open cover of \(X\) and hence there exists a countable cover \(\mathbb{V}_0\) of \(\mathbb{V}\), such that \(X = \bigcup\{f^{-1}(V_\alpha) : \alpha \in \mathbb{V}_0\}\). Since \(f\) is a surjection, \(Y = \bigcup\{V_\alpha : \alpha \in \mathbb{V}_0\}\) and hence \(Y\) is strongly-\(S\)-Lindelöf.

Theorem 4.2.19: Let \((X,\tau)\) be \(\pi Ga\)-connected and \((Y,\sigma)\) be \(T_1\). If \(f : (X,\tau) \rightarrow (Y,\sigma)\) is contra-\(\pi Ga\)-continuous, then \(f\) is constant.

Proof: Assume \(Y\) is non-empty. Since \(Y\) is a \(T_1\)-space and \(f\) is contra-\(\pi Ga\)-continuous, \(\Omega = \{f^{-1}(y) : y \in Y\}\) is a disjoint \(\pi Ga\)-open partition of \(X\). If \(|\Omega| \geq 2\), then \(X\) can be written as the disjoint union of \(\pi Ga\)-open sets which is a contradiction. Therefore \(|\Omega| = 1\) and hence \(f\) is a constant.
Theorem 4.2.20: a) If \(f : (X, \tau) \to (Y, \sigma) \) is a contra-\(\pi \gamma \alpha \)-continuous, \(\pi \)-continuous surjection and \(X \) is connected, then \(Y \) has an indiscrete topology.

b) If \(f : (X, \tau) \to (Y, \sigma) \) is a contra-\(\pi \gamma \alpha \)-continuous, \(\pi \)-continuous surjection and \(X \) is connected, then \(Y \) is connected.

c) If \(f : (X, \tau) \to (Y, \sigma) \) is a contra-\(\pi \gamma \alpha \)-continuous surjection and \(X \) is \(\pi \Gamma \alpha \)-connected, then \(Y \) is connected.

Proof: a) Suppose that there exists a proper open set \(V \) of \(Y \). Since \(f \) is contra-\(\pi \gamma \alpha \)-continuous and \(\pi \)-continuous, \(f^{-1}(V) \) is \(\pi \gamma \alpha \)-closed and \(\pi \)-open in \(X \). By Lemma 2.2.9, \(f^{-1}(V) \) is a proper clopen set in \(X \) which is a contradiction to the fact that \(X \) is connected. Therefore \(Y \) has an indiscrete topology.

b) Suppose \(Y \) is not connected. There exist non empty disjoint open sets \(V_1 \) and \(V_2 \) such that \(Y = V_1 \cup V_2 \). Since \(f \) is contra-\(\pi \gamma \alpha \)-continuous and \(\pi \)-continuous, \(f^{-1}(V_1) \) and \(f^{-1}(V_2) \) are \(\pi \gamma \alpha \)-closed and \(\pi \)-open in \(X \) and hence clopen by Lemma 2.2.9.

Also \(f^{-1}(V_1) \) and \(f^{-1}(V_2) \) are non empty disjoint sets in \(X \) such that \(X = f^{-1}(V_1) \cup f^{-1}(V_2) \) which shows that \(X \) is not connected. Hence \(Y \) is connected.

c) Suppose \(Y \) is not connected. There exist non empty disjoint open sets \(V_1 \) and \(V_2 \) such that \(Y = V_1 \cup V_2 \). Since \(f \) is contra-\(\pi \gamma \alpha \)-continuous, \(f^{-1}(V_1) \) and \(f^{-1}(V_2) \) are \(\pi \gamma \alpha \)-closed sets in \(X \) such that \(X = f^{-1}(V_1) \cup f^{-1}(V_2) \) and \(f^{-1}(V_1) \cap f^{-1}(V_2) = \emptyset \) which shows that \(X \) is not \(\pi \Gamma \alpha \)-connected. Hence \(Y \) is connected.

Definition 4.2.21: A subset \(A \) of a space \(X \) is said to be

i) \(\pi \gamma \alpha \)-dense if \(\pi \gamma \alpha \text{-cl}(A) = X \).

ii) \(\pi \gamma \alpha \)-\(T_1 \) if for each pair of distinct points \(x \) and \(y \) in \(X \), there exist \(\pi \gamma \alpha \)-open sets \(U \) and \(V \) containing \(x \) and \(y \) respectively such that \(y \notin U \) and \(x \notin V \).

iii) \(\pi \gamma \alpha \)-Hausdorff (or \(\pi \gamma \alpha \)-\(T_2 \)) if for each pair of distinct points \(x \) and \(y \) in \(X \), there exist \(U \in \pi \Gamma \alpha O(X, x) \) and \(V \in \pi \Gamma \alpha O(Y, y) \) such that \(U \cap V = \emptyset \).

iv) clopen \(T_2 \) [169] (clopen Hausdorff or ultra Hausdorff) if for each pair of distinct points \(x \) and \(y \) in \(X \), there exist disjoint clopen sets \(U \) and \(V \) in \(X \) such that \(x \in U \) and \(y \in V \).

v) ultra normal [169] if every two disjoint closed sets of \(X \) can be separated by clopen sets.
vi) weakly Hausdorff[168] if each element is an intersection of regular closed sets.

Theorem 4.2.22: Suppose \(\pi G\alpha C(X,\tau) \) is closed under arbitrary intersections. If \(f : (X,\tau) \rightarrow (Y,\sigma) \) and \(g : (X,\tau) \rightarrow (Y,\sigma) \) are contra-\(\pi G\alpha \)-continuous functions and \(Y \) is Urysohn, then \(E = \{ x \in X : f(x) = g(x) \} \) is \(\pi G\alpha \)-closed in \(X \).

Proof: Let \(x \in X - E \). Then \(f(x) \neq g(x) \). Since \(Y \) is Urysohn, there exist open sets \(V \) and \(W \) such that \(f(x) \in V \), \(g(x) \in W \) and \(\text{cl}(V) \cap \text{cl}(W) = \phi \). Since \(f \) and \(g \) are contra-\(\pi G\alpha \)-continuous, \(f^{-1}(\text{cl}(V)) \) and \(g^{-1}(\text{cl}(W)) \) are \(\pi G\alpha \)-open sets in \(X \). Let \(U = f^{-1}(\text{cl}(V)) \) and \(V = g^{-1}(\text{cl}(W)) \). Then \(U \) and \(V \) are \(\pi G\alpha \)-open sets in \(X \) containing \(x \). Let \(A = U \cap V \). Then \(A \) is \(\pi G\alpha \)-open in \(X \) containing \(x \). Hence, \(f(A) \cap g(A) = f(U \cap V) \cap g(U \cap V) \subseteq f(U) \cap g(V) \subseteq \text{cl}(V) \cap \text{cl}(W) = \phi \). Therefore \(A \cap E = \phi \) and \(x \notin \pi G\alpha \text{-cl}(E) \). Hence \(E \) is \(\pi G\alpha \)-closed in \(X \).

Theorem 4.2.23: Suppose \(\pi G\alpha C(X,\tau) \) is closed under arbitrary intersections. If \(f : (X,\tau) \rightarrow (Y,\sigma) \) and \(g : (X,\tau) \rightarrow (Y,\sigma) \) are contra-\(\pi G\alpha \)-continuous functions and \(Y \) is Urysohn and \(f = g \) on a \(\pi G\alpha \)-dense set \(A \subseteq X \), then \(f = g \) on \(X \).

Proof: Since \(f \) and \(g \) are contra-\(\pi G\alpha \)-continuous functions and \(Y \) is Urysohn, by Theorem 4.2.22 \(E \) is \(\pi G\alpha \)-closed in \(X \). By assumption, we have \(f = g \) on a \(\pi G\alpha \)-dense set \(A \subseteq X \). Since \(A \subseteq E \) and \(A \) is \(\pi G\alpha \)-dense, \(X = \pi G\alpha \text{-cl}(A) \subseteq \pi G\alpha \text{-cl}(E) = E \). Hence \(f = g \) on \(X \).

Theorem 4.2.24: Let \(X \) and \(Y \) be topological spaces. If for each pair of distinct points \(x \) and \(y \) in \(X \), there exists a function \(f \) from \(X \) into \(Y \) such that \(f(x) \neq f(y) \), \(Y \) is an Urysohn space and \(f \) is a contra-\(\pi G\alpha \)-continuous function at \(x \) and \(y \), then \(X \) is \(\pi G\alpha \text{-T}_2 \).

Proof: Let \(x \) and \(y \) be any two distinct points in \(X \). Then since \(Y \) is Urysohn, there exists a function \(f \) from \(X \) into \(Y \) such that \(f(x) \neq f(y) \). Let \(a = f(x) \) and \(b = f(y) \). Then \(a \neq b \). Since \(Y \) is Urysohn space, there exist open sets \(V \) and \(W \) containing \(a \) and \(b \) respectively such that \(\text{cl}(V) \cap \text{cl}(W) = \phi \). Since \(f \) is a contra-\(\pi G\alpha \)-continuous function at \(x \) and \(y \) there exist \(\pi G\alpha \)-open sets \(A = f^{-1}(\text{cl}(V)) \) and \(B = f^{-1}(\text{cl}(W)) \) containing \(x \) and \(y \) respectively such that \(f(A) \subseteq \text{cl}(V) \) and \(f(B) \subseteq \text{cl}(W) \). Then \(f(A) \cap f(B) = \phi \). So \(A \cap B = \phi \). Hence \(X \) is \(\pi G\alpha \text{-T}_2 \).
Theorem 4.2.25:

a) If \(f: (X, \tau) \rightarrow (Y, \sigma) \) is contra-\(\pi \alpha \)-continuous injection and \(Y \) is weakly Hausdorff, then \(X \) is \(\pi \alpha - \mathcal{T}_1 \).

b) If \(f: (X, \tau) \rightarrow (Y, \sigma) \) is contra-\(\pi \alpha \)-continuous injection and \(Y \) is ultra Hausdorff, then \(X \) is \(\pi \alpha - \mathcal{T}_2 \).

c) If \(f: (X, \tau) \rightarrow (Y, \sigma) \) is a contra-\(\pi \alpha \)-continuous closed injection and \(Y \) is ultra normal, then \(X \) is \(\pi \alpha \)-normal.

Proof:

a) Since \(Y \) is weakly Hausdorff for any two distinct points \(x \) and \(y \) in \(X \), there exist regular closed sets \(A \) and \(B \) in \(Y \) such that \(f(x) \in A \), \(f(y) \notin A \), \(f(y) \in B \), \(f(y) \notin B \). Since \(f \) is contra-\(\pi \alpha \)-continuous, \(f^{-1}(A) \) and \(f^{-1}(B) \) are \(\pi \alpha \)-open subsets of \(X \) such that \(x \in f^{-1}(A) \), \(y \notin f^{-1}(A) \), \(y \in f^{-1}(B) \), \(x \notin f^{-1}(B) \). Hence \(X \) is \(\pi \alpha - \mathcal{T}_1 \).

b) Let \(x \) and \(y \) be distinct points of \(X \). Then \(f(x) \neq f(y) \) and since \(Y \) is ultra Hausdorff, there exist clopen sets \(A \) and \(B \) containing \(f(x) \) and \(f(y) \) respectively such that \(A \cap B = \emptyset \). By hypothesis, \(f^{-1}(A) \) and \(f^{-1}(B) \) are \(\pi \alpha \)-open sets in \(X \) containing \(x \) and \(y \) respectively such that \(f^{-1}(A) \cap f^{-1}(B) = \emptyset \). Hence \(X \) is \(\pi \alpha - \mathcal{T}_2 \).

c) Let \(A \) and \(B \) be disjoint closed subsets of \(X \). Then \(f \) is a closed injection implies \(f(A) \) and \(f(B) \) are disjoint and closed in \(Y \). Since \(Y \) is ultra normal, \(f(A) \) and \(f(B) \) are separated by disjoint clopen sets \(C \) and \(D \) respectively. Thus \(A \subset f^{-1}(C) \in \pi \alpha C(X, \tau) \), \(B \subset f^{-1}(D) \in \pi \alpha O(X) \) and \(f^{-1}(C) \cap f^{-1}(D) = \emptyset \). Hence \(X \) is \(\pi \alpha \)-normal.

4.3 Almost Contra-\(\pi \alpha \)-Continuous Functions

In this section, we introduce the concept of almost contra-\(\pi \alpha \)-continuous functions which is a weaker form of contra-\(\pi \alpha \)-continuous functions. Moreover, we investigate the relationships among almost contra-\(\pi \alpha \)-continuous functions, separation axioms, connectedness and compactness.

Definition 4.3.1: A function \(f: (X, \tau) \rightarrow (Y, \sigma) \) is said to be almost contra-\(\pi \alpha \)-continuous if \(f^{-1}(V) \in \pi \alpha C(X, \tau) \) for each \(V \in RO(Y, \sigma) \).
Theorem 4.3.2: Suppose $\pi G\alpha O(X,\tau)$ is closed under arbitrary unions. The following statements are equivalent for a function $f: (X,\tau) \rightarrow (Y,\sigma)$:

1. f is almost contra-$\pi G\alpha$-continuous.
2. $f^{-1}(F) \in \pi G\alpha O(X,\tau)$, for every $F \in RC(Y,\sigma)$.
3. For each $x \in X$ and each regular closed set F in Y containing $f(x)$, there exists a $\pi G\alpha$-open set U in X containing x such that $f(U) \subset F$.
4. For each $x \in X$ and each regular open set V in Y not containing $f(x)$, there exists a $\pi G\alpha$-closed set K in X not containing x such that $f^{-1}(V) \subset K$.
5. $f^{-1}(\text{int}(\text{cl}(G))) \in \pi G\alpha C(X,\tau)$ for every open subset G of Y.
6. $f^{-1}(\text{cl}(\text{int}(F))) \in \pi G\alpha O(X,\tau)$ for every closed subset F of Y.

Proof:

1 \Rightarrow 2: Let $F \in RC(Y,\sigma)$. Then $Y-F \in RO(Y,\sigma)$. By (1),

$$f^{-1}(Y-F) = X-f^{-1}(F) \in \pi G\alpha C(X).$$

This implies $f^{-1}(F) \in \pi G\alpha O(X,\tau)$.

2 \Rightarrow 1: Let $V \in RO(Y,\sigma)$. Then $Y-V \in RC(Y,\sigma)$. By (2),

$$f^{-1}(Y-V) = X-f^{-1}(V) \in \pi G\alpha O(X).$$

This implies $f^{-1}(V) \in \pi G\alpha C(X,\tau)$.

2 \Rightarrow 3: Let F be any regular closed set in Y containing $f(x)$. Then $f^{-1}(F) \in \pi G\alpha O(X,\tau)$ and $x \in f^{-1}(F)$ by (2). Take $U = f^{-1}(F)$. Then $f(U) \subset F$.

3 \Rightarrow 2: Let $F \in RC(Y,\sigma)$ and $x \in f^{-1}(F)$. From (3), there exists a $\pi G\alpha$-open set U_x in X containing x such that $U_x \subset f^{-1}(F)$. We have $f^{-1}(F) = \bigcup\{ U_x : x \in f^{-1}(F) \}$. Thus $f^{-1}(F)$ is $\pi G\alpha$-open.

3 \Rightarrow 4: Let V be a regular open set in Y not containing $f(x)$. Then $Y-V$ is a regular closed set containing $f(x)$. By (3) there exists a $\pi G\alpha$-open set U in X containing x such that $f(U) \subset Y-V$. Hence $U \subset f^{-1}(Y-V) \subset X-f^{-1}(V)$ and then $f^{-1}(V) \subset X-U$. Take $K = X-U$. We obtain a $\pi G\alpha$-closed set K in X not containing x such that $f^{-1}(V) \subset K$.

4 \Rightarrow 3: Let F be a regular closed set in Y containing $f(x)$. Then $Y-F$ is a regular open set in Y not containing $f(x)$. By (4) there exists a $\pi G\alpha$-closed set K in X not containing x such that $f^{-1}(Y-F) \subset K$. That is $X-f^{-1}(F) \subset K$ implies $X-K \subset f^{-1}(F)$ and hence
f (X-K) ⊆ F. Take U = X-K. Then U is a rcα-open set in X containing x such that f (U) ⊆ F.

1 ⇒ 5: Let G be an open subset of Y. Since int(cl(G)) is regular open, then by (1)
f⁻¹ (int(cl (G))) ∈ πGαC(X,τ) .

5 ⇒ 1: Let V ∈ RO(Y,σ) Then V is open in Y. By 5, f⁻¹ (int cl(V)) ∈ πGαC(X,τ)
implies f⁻¹ (V) ∈ πGαC(X,τ) .

2 ⇔ 6: similar as 1 ⇔ 5 .

Remark 4.3.3: The following diagram holds

![Diagram of 5 types of continuity]

None of the implications is reversible for almost contra-πgα-continuity as shown by the following examples.

Example 4.3.4:1) Let X = \{a,b,c\}, τ = \{ϕ,\{a\},\{b\},\{a,b\},\{a,c\},X\} and

σ = \{ϕ,\{a\},\{b\},\{a,b\},X\}. Then the identity function f: (X,τ) → (X,σ) is almost contra-πgα-continuous but not regular set-connected.

2) Let X = \{a,b,c,d\}, τ = \{ϕ,\{a\},\{d\},\{a,c\},\{a,d\},\{a,c,d\},X\} and

σ = \{ϕ,\{a\},\{a,b\},\{a,c,d\}\}. Then the identity function f: (X,τ) → (X,σ) is almost contra-πgα-continuous but not contra-πgα-continuous.

3) Let X = \{a,b,c\}, τ = \{ϕ,\{a\},\{b\},X\} and σ = \{ϕ,\{a\},\{a,b\},X\}. Then the identity function f: (X,τ) → (X,σ) is contra-πgα-continuous but not contra continuous.
Theorem 4.3.5: If $f : (X, \tau) \rightarrow (Y, \sigma)$ is an almost contra-πGa-continuous function and A is an open subset of X, then the restriction $f/A : A \rightarrow Y$ is almost contra-πGa-continuous.

Proof: Let $F \in RC(Y)$. Since f is almost contra-πGa-continuous, $f^{-1}(F) \in \pi GaO(X)$. Since A is open, it follows that $(f/A)^{-1}(F) = A \cap f^{-1}(F) \in \pi GaO(A)$. Therefore f/A is an almost contra-πGa-continuous function.

Remark 4.3.6: Every restriction of an almost contra-πGa-continuous function is not necessarily almost contra-πGa-continuous.

Example 4.3.7: Let $X = \{a, b, c, d\}$, $\tau = \{\phi, X, \{a\}, \{d\}, \{a, d\}, \{c, d\}, \{a, c, d\}\}$ and $\sigma = \{\phi, X, \{b\}, \{c\}, \{b, c\}\}$. The identity function $f : (X, \tau) \rightarrow (X, \sigma)$ is almost contra-πGa-continuous. But if $A = \{a, b, c\}$ where A is not open in (X, τ) and $\tau_A = \{\phi, \{a, b, c\}, \{a\}, \{c\}, \{a, c\}\}$ is the relative topology on A induced by τ, then $f/A : (A, \tau_A) \rightarrow (X, \sigma)$ is not almost contra-πGa-continuous. Note that $\{a, b, d\}$ is regular closed in (X, σ) but $(f/A)^{-1}(\{a, b, d\}) = A \cap \{a, b, d\} = \{a, b\}$ is not πGa-open in (A, τ_A).

Definition 4.3.8: A collection $\{U_\alpha : \alpha \in I\}$ of subsets of X is called a π-cover if U_α is πGa-closed and regular open for each $\alpha \in I$.

Theorem 4.3.9: Suppose that $\pi GaO(X, \tau)$ sets are closed under arbitrary unions. Let $f : (X, \tau) \rightarrow (Y, \sigma)$ be a function and $\{U_\alpha : \alpha \in I\}$ be a π-cover of X. If for each $\alpha \in I$, f / U_α is almost contra-πGa-continuous, then $f : (X, \tau) \rightarrow (Y, \sigma)$ is almost contra-πGa-continuous function.

Proof: Let $V \in RC(Y)$. Then f / U_α is almost contra-πGa-continuous function implies $(f / U_\alpha)^{-1}(V) \in \pi GaO(U_\alpha)$. Since $U_\alpha \in \pi GaC(X)$ and is regular open, it follows $(f / U_\alpha)^{-1}(V) \in \pi GaO(X)$ for each $\alpha \in I$. Then $f^{-1}(V) = \cup \{(f / U_\alpha)^{-1}(V) : \alpha \in I\} \in \pi GaO(X)$.

Thus f is an almost contra-πGa-continuous function.
Theorem 4.3.10: Let \(f : X \rightarrow Y \) be a function and let \(g : X \rightarrow X \times Y \) be the graph of \(f \) defined by \(g(x) = (x, f(x)) \) for every \(x \in X \). If \(g \) is almost contra-\(\pi \)g\(\alpha \)-continuous, then \(f \) is almost contra-\(\pi \)g\(\alpha \)-continuous.

Proof: Let \(V \in \text{RC}(Y) \), then
\[
X \times V = X \times \text{cl}(\text{int}(V)) = \text{cl}(\text{int}(X)) \times \text{cl}(\text{int}(V)) = \text{cl}(\text{int}(X \times V)).
\]
Therefore \(X \times V \in \text{RC}(X \times Y) \). Since \(g \) is almost contra-\(\pi \)g\(\alpha \)-continuous,
\[
g^{-1}(X \times V) \in \pi \text{G\(\alpha \)}(X).\]
This implies \(f^{-1}(V) = g^{-1}(X \times V) \in \pi \text{G\(\alpha \)}(X) \). Thus \(f \) is almost contra-\(\pi \)g\(\alpha \)-continuous.

Lemma 4.3.11: Suppose that \(\pi \text{G\(\alpha \)}(X, \tau) \) sets are closed under arbitrary unions. A function \(f : (X, \tau) \rightarrow (Y, \sigma) \) is almost \(\pi \)g\(\alpha \)-continuous if and only if for each \(x \in X \) and each regular open set \(V \) of \(Y \) containing \(f(x) \) there exists \(U \in \pi \text{G\(\alpha \)}(X, x) \) such that \(f(U) \subseteq V \).

Theorem 4.3.12: Suppose that \(\pi \text{G\(\alpha \)}(X, \tau) \) sets are closed under arbitrary unions. Let \(Y \) be extremally disconnected. Then a function \(f : (X, \tau) \rightarrow (Y, \sigma) \) is almost contra-\(\pi \)g\(\alpha \)-continuous if and only if it is almost \(\pi \)g\(\alpha \)-continuous.

Proof: Let \(x \in X \) and \(V \) be any regular open set of \(Y \) containing \(f(x) \). Since \(Y \) is extremally disconnected, \(V \) is clopen and hence \(V \) is regular closed. By Theorem 4.3.2, there exists \(U \in \pi \text{G\(\alpha \)}(X, x) \) such that \(f(U) \subseteq V \). Then lemma 4.3.11 implies \(f \) is almost \(\pi \)g\(\alpha \)-continuous. Conversely, let \(F \) be any regular closed set of \(Y \). Since \(Y \) is extremally disconnected, \(F \) is also regular open and \(f^{-1}(F) \) is \(\pi \)g\(\alpha \)-open in \(X \). Hence \(f \) is almost contra-\(\pi \)g\(\alpha \)-continuous.

Theorem 4.3.13: Let \(f : (X, \tau) \rightarrow (Y, \sigma) \) and \(g : (Y, \sigma) \rightarrow (Z, \eta) \) be two functions. Then the following properties hold:

i) If \(f \) is almost contra-\(\pi \)g\(\alpha \)-continuous and \(g \) is regular set-connected, then \(g \circ f : (X, \tau) \rightarrow (Z, \eta) \) is almost contra-\(\pi \)g\(\alpha \)-continuous and almost \(\pi \)g\(\alpha \)-continuous.

ii) If \(f \) is almost contra-\(\pi \)g\(\alpha \)-continuous and \(g \) is perfectly continuous, then \(g \circ f : (X, \tau) \rightarrow (Z, \eta) \) is \(\pi \)g\(\alpha \)-continuous and contra-\(\pi \)g\(\alpha \)-continuous.

63
iii) If \(f \) is contra-\(\pi g \alpha \)-continuous and \(g \) is regular set-connected, then \(g \circ f : (X, \tau) \to (Z, \eta) \) is almost contra-\(\pi g \alpha \)-continuous and almost \(\pi g \alpha \)-continuous.

Proof: Let \(V \in RO(Z) \). Then \(g \) is regular set-connected implies \(g^{-1}(V) \) is clopen in \(Y \).
Since \(f \) is almost contra-\(\pi g \alpha \)-continuous, \(f^{-1}(g^{-1}(V)) = (g \circ f)^{-1}(V) \) is \(\pi g \alpha \)-open and \(\pi g \alpha \)-closed. Therefore \(g \circ f \) is almost contra-\(\pi g \alpha \)-continuous and almost \(\pi g \alpha \)-continuous.

Proof of ii) and iii) can be obtained similarly.

Theorem 4.3.14: If \(f : (X, \tau) \to (Y, \sigma) \) is a surjective \(M-\pi g \alpha \)-open map and \(g : (Y, \sigma) \to (Z, \eta) \) is a function such that \(g \circ f : (X, \tau) \to (Z, \eta) \) is almost contra-\(\pi g \alpha \)-continuous, then \(g \) is almost contra-\(\pi g \alpha \)-continuous.

Proof: Let \(V \) be any regular closed set in \(Z \). Since \(g \circ f \) is almost contra-\(\pi g \alpha \)-continuous, \((g \circ f)^{-1}(V) \in \pi G \alpha O(X) \). Since \(f \) is a surjective \(M-\pi g \alpha \)-open map, \(f((g \circ f)^{-1}(V)) = f(f^{-1}(g^{-1}(V))) = g^{-1}(V) \) is \(\pi g \alpha \)-open in \(Y \). Therefore \(g \) is almost contra-\(\pi g \alpha \)-continuous.

Theorem 4.3.15: If \(f : (X, \tau) \to (Y, \sigma) \) is a surjective, \(M-\pi g \alpha \)-closed map and \(g : (Y, \sigma) \to (Z, \eta) \) is a function such that \(g \circ f : (X, \tau) \to (Z, \eta) \) is almost contra-\(\pi g \alpha \)-continuous, then \(g \) is almost contra-\(\pi g \alpha \)-continuous.

Proof: Similar to that of Theorem 4.3.14.

Definition 4.3.16: A space \(X \) is said to be
a) \(\pi G \alpha \)-closed if every \(\pi g \alpha \)-closed cover of \(X \) has a finite subcover.
b) countably \(\pi G \alpha \)-closed if every countable cover of \(X \) by \(\pi g \alpha \)-closed sets has a finite subcover.
c) countably \(\pi G \alpha \)-compact if every countable cover of \(X \) by \(\pi g \alpha \)-open sets has a finite subcover.
d) \(\pi G \alpha C \)-Lindelof if every cover of \(X \) by \(\pi g \alpha \)-closed sets has a countable subcover.
e) nearly compact[165] if every regular open cover of \(X \) has a finite subcover.
f) nearly countably compact[54,166] if every countable cover of \(X \) by regular open sets has a finite subcover.
g) nearly Lindelof[49] if every cover of \(X \) by regular open sets has a countable subcover.
b) S-closed [176] if every regular closed cover of X has a finite subcover.
i) countably S-closed compact [31] if every countable cover of X by regular closed sets has a finite subcover.

j) S-Lindelof [97] if every cover of X by regular closed sets has a countable subcover.

Theorem 4.3.17: Let $f : (X,t) \rightarrow (Y,\sigma)$ be an almost contra-$\pi\alpha$-continuous surjection. Then the following statements hold:
a) If X is $\pi\alpha$-closed, then Y is nearly compact.
b) If X is $\pi\alpha$-Lindelof, then Y is nearly Lindelof.
c) If X is countably-$\pi\alpha$-closed, then Y is nearly countably compact.
d) If X is $\pi\alpha$-compact, then Y is S-closed.
e) If X is $\pi\alpha$-Lindelof, then Y is S-Lindelof.
f) If X is countable $\pi\alpha$-compact, then Y is countably S-closed compact.

Proof: a) Let $\{V_{\alpha} : \alpha \in I\}$ be any regular open cover of Y. Then f is almost contra-$\pi\alpha$-continuous implies $\{f^{-1}(V_{\alpha}) : \alpha \in I\}$ is a $\pi\alpha$-closed cover of X. Since X is $\pi\alpha$-closed, there exists a finite subset I_0 of I such that $X = \bigcup \{f^{-1}(V_{\alpha}) : \alpha \in I_0\}$. Thus we have $Y = \bigcup \{V_{\alpha} : \alpha \in I_0\}$ and Y is nearly compact.

Proof of b) and c) is similar to that of a).

d) Let $\{V_{\alpha} : \alpha \in I\}$ be any regular closed cover of Y. Since f is almost contra-$\pi\alpha$-continuous, $\{f^{-1}(V_{\alpha}) : \alpha \in I\}$ is a $\pi\alpha$-open cover of X and by assumption there exists a finite subset I_0 of I such that $X = \bigcup \{f^{-1}(V_{\alpha}) : \alpha \in I_0\}$. Thus we have $Y = \bigcup \{V_{\alpha} : \alpha \in I_0\}$. Hence Y is S-closed.

Proof of e) and f) is similar to that of d).

Definition 4.3.18: A space X is said to be

a) mildly $\pi\alpha$-compact if every $\pi\alpha$-clopen cover of X has a finite subcover.
b) mildly countably-$\pi\alpha$-compact if every $\pi\alpha$-clopen countable cover of X has a finite subcover.
c) mildly $\pi\alpha$-Lindelof if every $\pi\alpha$-clopen cover of X has a countable subcover.
Theorem 4.3.19: Let \(f:(X,x) \to (Y,\alpha) \) be almost contra-\(\pi \alpha \)-continuous and almost \(\pi \alpha \)-continuous surjection. Then

a) If \(X \) is mildly \(\pi \alpha \)-compact, then \(Y \) is nearly compact.

b) If \(X \) is mildly countably-\(\pi \alpha \)-compact, then \(Y \) is nearly countably compact.

c) If \(X \) is mildly \(\pi \alpha \)-Lindelöf, then \(Y \) is nearly Lindelöf.

Proof: a) Let \(V \in RO(Y) \). Since \(f \) is almost contra-\(\pi \alpha \)-continuous and almost \(\pi \alpha \)-continuous, \(f^{-1}(V) \) is \(\pi \alpha \)-closed and \(\pi \alpha \)-open in \(X \) respectively. Hence \(f^{-1}(V) \) is \(\pi \alpha \)-clopen in \(X \). Let \(\{V_\alpha : \alpha \in I\} \) be any regular open cover of \(Y \). Then \(\{f^{-1}(V_\alpha) : \alpha \in I\} \) is a \(\pi \alpha \)-clopen cover of \(X \). Since \(X \) is mildly \(\pi \alpha \)-compact, there exists a finite subset \(I_0 \) of \(I \) such that \(X = \bigcup \{f^{-1}(V_\alpha) : \alpha \in I_0\} \). Since \(f \) is surjective, we obtain \(Y = \bigcup \{V_\alpha : \alpha \in I_0\} \). Hence \(Y \) is nearly compact.

Proof of b) and c) is similar to that of a).

Definition 4.3.20: A topological space \(X \) is called \(\pi \alpha \)-ultra connected if every two non-void \(\pi \alpha \)-closed subsets of \(X \) intersect.

Theorem 4.3.21: a) If a function \(f:(X,\tau) \to (Y,\sigma) \) is almost contra-\(\pi \alpha \)-continuous and almost-\(\pi \)-continuous, then \(f \) is regular set-connected.

b) If \(X \) is \(\pi \alpha \)-ultra connected and \(f:(X,\tau) \to (Y,\sigma) \) is almost contra-\(\pi \alpha \)-continuous and surjective, then \(Y \) is hyperconnected.

c) If \(f : (X,\tau) \to (Y,\sigma) \) is an almost contra-\(\pi \alpha \)-continuous surjection and \(X \) is \(\pi \alpha \)-connected, then \(Y \) is connected.

d) If \(f : (X,\tau) \to (Y,\sigma) \) is an almost contra-\(\pi \alpha \)-continuous injection and \(Y \) is weakly Hausdorff, then \(X \) is \(\pi \alpha \)-T\(_1\).

Proof: a) Let \(V \in RO(Y) \). Since \(f \) is almost contra-\(\pi \alpha \)-continuous and almost-\(\pi \)-continuous, \(f^{-1}(V) \) is \(\pi \alpha \)-closed and \(\pi \)-open. \(f^{-1}(V) \) is clopen by Lemma 2.2.9. Hence \(f \) is regular set-connected.

b) Assume that \(Y \) is not hyperconnected. Then there exists an open set \(V \) such that \(V \) is not dense in \(Y \). Then there exist disjoint non-empty regular open subsets \(B_1 \) and \(B_2 \) in \(Y \).
namely $B_1 = \text{int}(\text{cl}(V))$ and $B_2 = Y - \text{cl}(V)$. Since f is almost contra-$\pi \alpha$-continuous and surjective, $A_1 = f^{-1}(B_1)$ and $A_2 = f^{-1}(B_2)$ are disjoint non-empty $\pi \alpha$-closed subsets of X which is a contradiction to the fact that X is $\pi \alpha$-ultra connected. Hence Y is hyperconnected.

c) Suppose that Y is not connected. Then there exist non-empty disjoint open sets V_1 and V_2 such that $Y = V_1 \cup V_2$. Then V_1 and V_2 are clopen in Y. Since f is almost contra-$\pi \alpha$-continuous, $f^{-1}(V_1)$ and $f^{-1}(V_2)$ are $\pi \alpha$-open in X. Moreover $f^{-1}(V_1)$ and $f^{-1}(V_2)$ are disjoint and $X = f^{-1}(V_1) \cup f^{-1}(V_2)$ which is a contradiction to the fact that X is $\pi \alpha$-connected. Hence Y is connected.

d) Suppose that Y is weakly Hausdorff. For any two distinct points x and y in X, there exist $V, W \in \text{RC}(Y)$ such that $f(x) \in V$, $f(y) \in W$, $f(x) \not\in W$, $f(y) \not\in V$. Since f is almost contra-$\pi \alpha$-continuous, $f^{-1}(V)$ and $f^{-1}(W)$ are $\pi \alpha$-open subsets of X such that $x \in f^{-1}(V)$, $y \in f^{-1}(W)$, $y \not\in f^{-1}(V)$ and $x \not\in f^{-1}(W)$. This shows that X is $\pi \alpha$-T_1.

Theorem 4.3.22:

a) If $f: (X, \tau) \rightarrow (Y, \sigma)$ is an almost contra-$\pi \alpha$-continuous injection and Y is ultra Hausdorff, then X is $\pi \alpha$-T_2.

b) If $f: (X, \tau) \rightarrow (Y, \sigma)$ is an almost contra-$\pi \alpha$-continuous closed injection and Y is ultra normal, then X is $\pi \alpha$-normal.

Proof: Similar to that of Theorem 4.2.25.

4.4 Functions With $\pi \alpha$-Closed Graphs

In this section the concept of $\pi \alpha$-closed graphs, contra-$\pi \alpha$-closed graphs and $\pi \alpha$-regular graphs for functions between topological spaces are investigated.

Recall that for a function $f: (X, \tau) \rightarrow (Y, \sigma)$, the subset $\{(x, f(x)): x \in X\}$ of the product space $(X \times Y, \tau \times \sigma)$ is called the graph of f and is denoted by $G(f)$.

67
Definition 4.4.1: For a function \(f : (X, \tau) \rightarrow (Y, \sigma) \) the graph \(G(f) \) is said to be a \(\pi g \alpha \)-closed graph if for each \((x, y) \in X \times Y - G(f)\) there exist \(U \in \pi G \alpha O(X, x) \), \(V \in \pi G \alpha O(Y, y) \) such that \((U \times V) \cap G(f) = \emptyset\).

Lemma 4.4.2: The function \(f : (X, \tau) \rightarrow (Y, \sigma) \) has a \(\pi g \alpha \)-closed graph if and only if for each \((x, y) \in X \times Y - G(f)\) there exist \(U \in \pi G \alpha O(X, x) \), \(V \in \pi G \alpha O(Y, y) \) such that \(f(U) \cap V = \emptyset \).

Proof: It follows from definition and the fact that for any two subsets \(U \subset X \) and \(V \subset Y \), \((U \times V) \cap G(f) = \emptyset\) if and only if \(f(U) \cap V = \emptyset \).

Lemma 4.4.3: Let \(f : (X, \tau) \rightarrow (Y, \sigma) \) be given. Then \(G(f) \) is closed if and only if for each \((x, y) \in X \times Y - G(f)\) there exist an open set \(U \) in \(X \) and an open set \(V \) in \(Y \) such that \(f(U) \cap V = \emptyset \).

Lemma 4.4.4: Let \(f : (X, \tau) \rightarrow (Y, \sigma) \) be given. Then \(G(f) \) is \(\alpha \)-closed if and only if for each \((x, y) \in X \times Y - G(f)\) there exist \(U \in \alpha O(X, x) \) and \(V \in \alpha O(Y, y) \) in \(Y \) such that \(f(U) \cap V = \emptyset \).

Theorem 4.4.5: a) Every closed graph is a \(\pi g \alpha \)-closed graph.

b) Every \(\alpha \)-closed graph is a \(\pi g \alpha \)-closed graph.

Proof: a) Let \(G(f) \) be closed. Then for each \((x, y) \in X \times Y - G(f)\) there exist open set \(U \) in \(X \) and open set \(V \) in \(Y \) such that \(f(U) \cap V = \emptyset \). Since every open set is \(\pi g \alpha \)-open, every closed graph is \(\pi g \alpha \)-closed graph.

b) Follows from the definition and from the fact that every \(\alpha \)-open set is \(\pi g \alpha \)-open.

Remark 4.4.6: Converse of the above is not true as seen in the following example.

Example 4.4.7: Let \(X = \{a, b\}, Y = \{a, b, c, d\}, \tau = \{\phi, X, \{a\}, \{b\}\} \) and \(\sigma = \{\phi, \{c, d\}, Y\} \) respectively. Let \(f : X \rightarrow Y \) be the mapping defined by \(f(a) = a, f(b) = b \). Then \(G(f) \) is \(\pi g \alpha \)-closed but is neither a closed graph nor an \(\alpha \)-closed graph.

Remark 4.4.8: Functions having \(\pi g \alpha \)-closed graph need not be \(\pi g \alpha \)-continuous.
Example 4.4.9: Let $X = \{a, b, c, d\}$, $\tau = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}\}$ and $\sigma = \text{discrete topology}$. Let $f : (X, \tau) \rightarrow (X, \sigma)$ be the identity mapping. Then $G(f)$ is $\pi\sigma\alpha$-closed but f is not $\pi\sigma\alpha$-continuous.

Remark 4.4.10: A $\pi\sigma\alpha$-continuous function need not have a $\pi\sigma\alpha$-closed graph as shown by the following example.

Example 4.4.11: Let $X = \{a, b, c\}$, $\tau = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}\}$ and $\sigma = \{\emptyset, X, \{a, b\}\}$ and $f : (X, \tau) \rightarrow (X, \sigma)$ be the identity mapping. Then f is $\pi\sigma\alpha$-continuous but $G(f)$ is not $\pi\sigma\alpha$-closed.

Remark 4.4.12: Examples 4.4.9 and 4.4.11 show that $\pi\sigma\alpha$-closed graph and $\pi\sigma\alpha$-continuous functions are independent concepts.

Theorem 4.4.13: a) Let $f : (X, x) \rightarrow (Y, \sigma)$ be a $\pi\sigma\alpha$-irresolute surjection where X is an arbitrary topological space and Y is $\pi\sigma\alpha$-T_2. Then $G(f)$ is $\pi\sigma\alpha$-closed.

b) Let $f : (X, x) \rightarrow (Y, \sigma)$ be a $\pi\sigma\alpha$-continuous surjection where X is an arbitrary topological space and Y is T_2. Then $G(f)$ is $\pi\sigma\alpha$-closed.

Proof: a) Let $(x, y) \in X \times Y - G(f)$. Then $y \neq f(x)$. Since Y is $\pi\sigma\alpha$-T_2, there exist $\pi\sigma\alpha$-open sets $U, V \subset Y$ such that $f(x) \in U$, $y \in V$ and $U \cap V = \emptyset$. Since f is $\pi\sigma\alpha$-irresolute, $W = f^{-1}(U) \in \pi\sigma\alpha\sigma\sigma(O(X, x))$. Hence $f(W) = f(f^{-1}(U)) \subset U$. This implies $f(W) \cap V = \emptyset$. Hence by Lemma 4.4.2, $G(f)$ is $\pi\sigma\alpha$-closed.

b) Let $(x, y) \in X \times Y - G(f)$. Then $y \neq f(x)$. Since Y is T_2, there exist open sets U and V containing $f(x)$ and y respectively such that $U \cap V = \emptyset$. Since f is $\pi\sigma\alpha$-continuous, $f^{-1}(U) = W \in \pi\sigma\alpha\sigma\sigma(O(X, x))$. Since f is a surjection, $f(W) = f(f^{-1}(U)) \subset U$. Hence $f(W) \cap V = \emptyset$. By Lemma 4.4.2, $G(f)$ is $\pi\sigma\alpha$-closed.

Theorem 4.4.14: a) Let $f : (X, \tau) \rightarrow (Y, \sigma)$ be any surjection with $G(f)$ $\pi\sigma\alpha$-closed. Then Y is $\pi\sigma\alpha$-T_1.

b) Let $f : (X, \tau) \rightarrow (Y, \sigma)$ be injective with $G(f)$ $\pi\sigma\alpha$-closed. Then X is $\pi\sigma\alpha$-T_1.

Proof: a) Let $y_1, y_2 \in Y$ such that $y_1 \neq y_2$. Since f is surjective, there exists $x_1 \in X$ such that $f(x_1) = y_2$. Now $(x_1, y_1) \in X \times Y - G(f)$. Since $G(f)$ is $\pi\sigma\alpha$-closed, there exist
\(U_1 \in \pi\text{G}_\alpha\text{O}(X,x_1) \) and \(V_1 \in \pi\text{G}_\alpha\text{O}(Y,y_1) \) such that \(f(U_1) \cap V_1 = \phi \). Now \(x_1 \in U_1 \) implies \(f(x_1) = y_2 \in f(U_1) \). \(y_2 \in f(U_1) \) and \(f(U_1) \cap V_1 = \phi \) implies \(y_2 \notin V_1 \). Again since \(f \) is surjective, there exist a point \(x_2 \in X \) such that \(f(x_2) = y_1 \).

Now \((x_2, y_2) \in X \times Y - \text{G}(f)\). Since \(\text{G}(f) \) is \(\pi\text{g}_\alpha \)-closed, there exist \(U_2 \in \pi\text{G}_\alpha\text{O}(X, x_2) \) and \(V_2 \in \pi\text{G}_\alpha\text{O}(Y, y_2) \) such that \(f(U_2) \cap V_2 = \phi \). Now \(x_2 \in U_2 \) implies \(f(x_2) = y_1 \in f(U_2) \). Now \(y_1 \in f(U_2) \) and \(f(U_2) \cap V_2 = \phi \) implies \(y_1 \notin V_2 \). Thus we obtain sets \(V_1, V_2 \in \pi\text{G}_\alpha\text{O}(Y) \) such that \(y_1 \in V_1 \) but \(y_2 \notin V_1 \) while \(y_2 \in V_2, y_1 \notin V_2 \). Hence \(Y \) is \(\pi\text{g}_\alpha \)-\(T_2 \).

b) Let \(x_1, x_2 \) be distinct points of \(X \). Since \(f \) is injective, \(f(x_1) \neq f(x_2) \).

Therefore \((x_1, f(x_2)) \in X \times Y - \text{G}(f)\). Since \(\text{G}(f) \) is \(\pi\text{g}_\alpha \)-closed, by Lemma 4.4.2 there exist \(U_1 \in \pi\text{G}_\alpha\text{O}(X, x_1) \) and \(V_1 \in \pi\text{G}_\alpha\text{O}(Y, f(x_2)) \) such that \(f(U_1) \cap V_1 = \phi \). \(f(x_2) \in V_1 \) and \(f(U_1) \cap V_1 = \phi \) implies \(f(x_2) \notin f(U_1) \) and so \(x_2 \notin U_1 \). Similarly for \((x_2, f(x_1)) \in X \times Y - \text{G}(f)\) there exist \(U_2 \in \pi\text{G}_\alpha\text{O}(X, x_2) \), \(V_2 \in \pi\text{G}_\alpha\text{O}(Y, f(x_1)) \) such that \(f(U_2) \cap V_2 = \phi \). Therefore \(f(x_1) \notin f(U_2) \) and so \(x_1 \notin U_2 \). Hence we obtain \(\pi\text{g}_\alpha \)-open sets \(U_1 \) and \(U_2 \) in \(X \) respectively such that \(x_1 \in U_1 \) but \(x_2 \notin U_1 \) and \(x_2 \in U_2 \) but \(x_1 \notin U_2 \). Thus \(X \) is \(\pi\text{g}_\alpha \)-\(T_1 \).

Theorem 4.4.15: Let \(f:(X,\tau) \rightarrow (Y,\sigma) \) be any \(M\pi\text{g}_\alpha \)-open surjection with \(\text{G}(f) \) \(\pi\text{g}_\alpha \)-closed. Then \(Y \) is \(\pi\text{g}_\alpha \)-\(T_2 \).

Proof: Let \(y_1, y_2 \in Y \) such that \(y_1 \neq y_2 \). Since \(f \) is surjective, there exists \(x_1 \in X \) such that \(f(x_1) = y_2 \). Then \((x_1, y_1) \in X \times Y - \text{G}(f)\). Since \(\text{G}(f) \) is \(\pi\text{g}_\alpha \)-closed, by Lemma 4.4.2, there exist \(U \in \pi\text{G}_\alpha\text{O}(X, x_1) \) and \(V \in \pi\text{G}_\alpha\text{O}(Y, y_1) \) such that \(f(U) \cap V = \phi \). Since \(f \) is \(M\pi\text{g}_\alpha \)-open, \(f(U) \) is \(\pi\text{g}_\alpha \)-open in \(Y \). Now \(x_1 \in U \) implies \(f(x_1) = y_2 \in f(U) \). Therefore there exist \(V \in \pi\text{G}_\alpha\text{O}(Y, y_1) \) and \(f(U) \in \pi\text{G}_\alpha\text{O}(Y, y_2) \) such that \(f(U) \cap V = \phi \). Hence \(Y \) is \(\pi\text{g}_\alpha \)-\(T_2 \) space.

Theorem 4.4.16: If \(f:(X,\tau) \rightarrow (Y,\sigma) \) is injective, \(\pi\text{g}_\alpha \)-irresolute with a \(\pi\text{g}_\alpha \)-closed graph, then \(X \) is \(\pi\text{g}_\alpha \)-\(T_2 \).

Proof: Let \(x_1, x_2 \) be two distinct points of \(X \). Since \(f \) is injective, \(f(x_1) \neq f(x_2) \).

Therefore \((x_1, f(x_2)) \in X \times Y - \text{G}(f)\). Since \(\text{G}(f) \) is \(\pi\text{g}_\alpha \)-closed, by Lemma 4.2.2 there exist
$U \in \pi G_{\alpha}O(X, x_1)$ and $V \in \pi G_{\alpha}O(Y, f(x_2))$ such that $f(U) \cap V = \emptyset$. That is $U \cap f^{-1}(V) = \emptyset$. Since f is πg_{α}- irresolute, $f^{-1}(V) \in \pi G_{\alpha}O(X, x_2)$. Hence there exist πg_{α}-open sets U and $f^{-1}(V)$ in X containing x_1 and x_2 respectively such that $U \cap f^{-1}(V) = \emptyset$. Therefore X is πg_{α}-T_2.

Corollary 4.4.17: If $f:(X,\tau)\rightarrow(Y,\sigma)$ is bijective, M-πg_{α}-open, πg_{α}- irresolute and $G(f)$ is πg_{α}-closed, then both X and Y are πg_{α}-T_2.

Proof: Follows from Theorems 4.4.15 and 4.4.16.

Theorem 4.4.18: Suppose $\pi G_{\alpha}O(X, \tau)$ is closed under arbitrary unions. If for the function $f:(X,\tau)\rightarrow(Y,\sigma)$ Y is $\pi G_{\alpha}O$-compact and $G(f)$ is πg_{α}-closed in $X \times Y$, then f is πg_{α}-continuous.

Proof: Let $x \in X$. Let V be open in Y and $y \in Y-V$. Then $(x, y) \in X \times Y - G(f)$. Since $G(f)$ is πg_{α}-closed, there exist $U_y \in \pi G_{\alpha}O(X, x)$ and $V_y \in \pi G_{\alpha}O(Y, y)$ such that $f(U_y) \cap V_y = \emptyset$. This holds for every $y \in Y-V$. Clearly $\mathcal{C} = \{ V_y : y \in Y-V \}$ is a cover of $Y-V$ by πg_{α}-open sets. Now Y is $\pi G_{\alpha}O$-compact and $Y-V$ is πg_{α}-closed. Then by Theorem 2.5.2 a) $Y-V$ is $\pi G_{\alpha}O$-compact relative to Y. So \mathcal{C} has a finite subfamily $\{ V_{y_i} : i = 1 \ldots n \}$ such that $Y-V \subset \cup \{ V_{y_i} : i = 1 \ldots n \}$. Let $\{ U_{y_i} : i = 1 \ldots n \}$ be the corresponding sets of $\pi G_{\alpha}O(X, x)$ satisfying $f(U_{y_i}) \cap V_{y_i} = \emptyset$.

Set $U = \cap \{ U_{y_i} : i = 1 \ldots n \}$. Now $U \in \pi G_{\alpha}O(X)$. If $\alpha \in U$, then $f(\alpha) \not\in V_{y_i}$ for all $i = 1 \ldots n$. This implies $f(\alpha) \not\in \cup \{ V_{y_i} : i = 1 \ldots n \}$ so that $f(\alpha) \not\in Y-V$ and hence $f(\alpha) \in V$. Since α is arbitrary, it follows that $f(U) \subset V$ and hence f is πg_{α}-continuous.

Definition 4.4.19: A function $f:(X,\tau)\rightarrow(Y,\sigma)$ is sub contra-πg_{α}-continuous provided there exists an open base \mathcal{B} for the topology on Y such that $f^{-1}(V)$ is πg_{α}-closed in X for every $V \in \mathcal{B}$.

Theorem 4.4.20: If $f:(X,\tau)\rightarrow(Y,\sigma)$ is a sub contra-πg_{α}-continuous function and Y is T_1, then $G(f)$ is πg_{α}-closed.
Proof: Let \((x, y) \in X \times Y - G(f)\). Then \(y \neq f(x)\). Let \(\mathcal{B}\) be an open base for the topology on \(Y\). Since \(f\) is sub contra-\(\pi\)-\(\alpha\)-continuous, \(f^{-1}(V)\) is \(\pi\)-\(\alpha\)-closed in \(X\) for every \(V \in \mathcal{B}\).

Since \(Y\) is \(T_1\), there exists a \(V \in \mathcal{B}\) such that \(y \in V\) and \(f(x) \notin V\). Then
\[(x, y) \in (X - f^{-1}(V)) \times V \subseteq X \times Y - G(f)\]. Hence \(G(f)\) is \(\pi\)-\(\alpha\)-closed.

Corollary 4.4.21: If \(f: (X, \tau) \to (Y, \sigma)\) is contra-\(\pi\)-\(\alpha\)-continuous and \(Y\) is \(T_1\), then \(G(f)\) is \(\pi\)-\(\alpha\)-closed.

Proof: Follows from the fact that every contra-\(\pi\)-\(\alpha\)-continuous function is sub contra-\(\pi\)-\(\alpha\)-continuous.

Definition 4.4.22: The graph \(G(f)\) of a function \(f: (X, \tau) \to (Y, \sigma)\) is said to be contra-\(\pi\)-\(\alpha\)-closed if for each \((x, y) \in X \times Y - G(f)\), there exist \(U \in \pi\text{GoO}(X, x)\) and \(V \in C(Y, y)\) such that \((U \times V) \cap G(f) = \emptyset\).

Lemma 4.4.23: The graph \(G(f)\) of a function \(f: (X, \tau) \to (Y, \sigma)\) is said to be contra-\(\pi\)-\(\alpha\)-closed in \(X \times Y\) if and only if for each \((x, y) \in X \times Y - G(f)\), there exist \(U \in \pi\text{GoO}(X, x)\) and \(V \in C(Y, y)\) such that \(f(U) \cap V = \emptyset\).

Theorem 4.4.24: If \(f: (X, \tau) \to (Y, \sigma)\) is contra-\(\pi\)-\(\alpha\)-continuous and \(Y\) is Urysohn, then \(G(f)\) is contra-\(\pi\)-\(\alpha\)-closed in \(X \times Y\).

Proof: Let \((x, y) \in X \times Y - G(f)\). Then \(y \neq f(x)\) and there exist open sets \(V, W\) such that \(f(x) \in V, y \in W\) and \(\text{cl}(V) \cap \text{cl}(W) = \emptyset\). Since \(f\) is contra-\(\pi\)-\(\alpha\)-continuous, there exists \(U \in \pi\text{GoO}(X, x)\) such that \(f(U) \subseteq \text{cl}(V)\). Therefore \(f(U) \cap \text{cl}(W) = \emptyset\). This shows that \(G(f)\) is contra-\(\pi\)-\(\alpha\)-closed.

Theorem 4.4.25: If \(f: (X, \tau) \to (Y, \sigma)\) is \(\pi\)-\(\alpha\)-continuous and \(Y\) is \(T_1\), then \(G(f)\) is contra-\(\pi\)-\(\alpha\)-closed in \(X \times Y\).

Proof: Let \((x, y) \in X \times Y - G(f)\) then \(y \neq f(x)\). Since \(Y\) is \(T_1\) and \(y \neq f(x)\), there exists an open set \(V\) of \(Y\) such that \(f(x) \in V\) and \(y \notin V\). Since \(f\) is \(\pi\)-\(\alpha\)-continuous, there exists \(U \in \pi\text{GoO}(X, x)\), such that \(f(U) \subseteq V\). Therefore \(f(U) \cap (Y - V) = \emptyset\) and \(Y - V \in C(Y, y)\). This implies \(G(f)\) is contra-\(\pi\)-\(\alpha\)-closed in \(X \times Y\).
Theorem 4.4.26: Suppose $\pi G_{aC}(X,\tau)$ is closed under arbitrary intersections. If $f: (X,\tau) \to (Y,\sigma)$ has a contra-πg_{a}-closed graph, then the inverse image of a strongly S-closed set A of Y is πg_{a}-closed in X.

Proof: Assume that A is a strongly S-closed set of Y and $x \notin f^{-1}(A)$. For each $a \in A$, $(x, a) \notin G(f)$. By Lemma 4.4.23, there exist $U_a \in \pi G_{aO}(X,x)$ and $V_a \in C(Y,a)$ such that $f(U_a) \cap V_a = \phi$. Since $\{A \cap V_a: a \in A\}$ is a closed cover of the subspace A, there exists a finite subset $A_0 \subset A$ such that $A \subset \cup\{V_a: a \in A_0\}$. Set $U = \cap\{U_a: a \in A_0\}$. Then U is πg_{a}-open and $f(U) \cap A = \phi$. Therefore $U \cap f^{-1}(A) = \phi$ and by Lemma 2.2.25, $x \notin \pi g_{a}-cl(f^{-1}(A))$. Hence $f^{-1}(A)$ is πg_{a}-closed in X.

Theorem 4.4.27: Suppose $\pi G_{aC}(X,\tau)$ is closed under arbitrary intersections. Let Y be a strongly S-closed space. If $f: (X,\tau) \to (Y,\sigma)$ has a contra-πg_{a}-closed graph, then f is contra-πg_{a}-continuous.

Proof: Let U be an open set of Y and $\{V_i: i \in I\}$ be a cover of U by closed sets V_i of U. For each $i \in I$, there exists a closed set K_i of Y such that $V_i = K_i \cap U$. Then the family $\{K_i: i \in I\} \cup \{(Y-U)\}$ is a closed cover of Y. By assumption, there exists a subset $I_0 \subset I$ such that $Y = \{K_i: i \in I_0\} \cup \{(Y-U)\}$. Therefore, we obtain $U = \cup\{V_i: i \in I_0\}$. This shows every open set in Y is strongly S-closed in Y. Now, for any open set U by Theorem 4.4.26, $f^{-1}(U)$ is πg_{a}-closed in X. Hence f is contra-πg_{a}-continuous.

Theorem 4.4.28: Let $f: (X,\tau) \to (Y,\sigma)$ have a contra-πg_{a}-graph. If f is injective, then X is πg_{a}-T_1.

Proof: Let x and y be two distinct points of X. Then $(x, f(y)) \in X \times Y - G(f)$. Then there exist $U \in \pi G_{aO}(X, x)$ and $V \in C(Y, f(y))$ such that $f(U) \cap V = \phi$. Hence $U \cap f^{-1}(V) = \phi$ implies $y \notin U$. Thus $x \in U$ and $y \notin U$. Similarly, $y \in U_1 \in \pi G_{aO}(X, x)$ and $x \notin U_1$. Hence X is πg_{a}-T_1.

73
Definition 4.4.29: A graph $G(f)$ of a function $f: (X, \tau) \to (Y, \sigma)$ is said to be $\pi \alpha$-regular if for each $(x, y) \in X \times Y - G(f)$, there exist a $U \in \pi G \alpha C(X, x)$ and a $V \in RO(Y, y)$ such that $(U \times V) \cap G(f) = \phi$.

Lemma 4.4.30: The following properties are equivalent for a graph $G(f)$ of a function f:
1. $G(f)$ is $\pi \alpha$-regular.
2. For each point $(x, y) \in X \times Y - G(f)$, there exist a $U \in \pi G \alpha C(X, x)$ and a $V \in RO(Y, y)$ such that $f(U) \cap V = \phi$.

Theorem 4.4.31: If $f: (X, \tau) \to (Y, \sigma)$ is almost contra-$\pi \alpha$-continuous and Y is T_2, then $G(f)$ is a $\pi \alpha$-regular graph in $X \times Y$.

Proof: Let $(x, y) \in X \times Y - G(f)$. It follows that $f(x) \neq y$. Since Y is T_2, there exist open sets V and W containing $f(x)$ and y respectively such that $V \cap W = \phi$. We have $\text{int}(\text{cl}(V)) \cap \text{int}(\text{cl}(W)) = \phi$. Since f is almost contra-$\pi \alpha$-continuous, $f^{-1}(\text{int}(\text{cl}(V)))$ is $\pi \alpha$-closed in X containing x. Take $U = f^{-1}(\text{int}(\text{cl}(V)))$. Then $f(U) \subset \text{int}(\text{cl}(V))$. Therefore $f(U) \cap \text{int}(\text{cl}(W)) = \phi$. Hence $G(f)$ is $\pi \alpha$-regular.

Theorem 4.4.32: Let $f: (X, \tau) \to (Y, \sigma)$ have a $\pi \alpha$-regular graph $G(f)$. If f is injective, then X is $\pi \alpha$-T_1.

Proof: Let x_1 and x_2 be any two distinct points of X. Then we have $(x_1, f(x_2)) \in X \times Y - G(f)$. By definition, there exist a $U_1 \in \pi G \alpha C(X)$ and a $V_1 \in RO(Y)$ such that $(x_1, f(x_2)) \in U_1 \times V_1$ and $f(U_1) \cap V_1 = \phi$. That is $U_1 \cap f^{-1}(V_1) = \phi$. Therefore we have $x_2 \in X - U_1$ and $x_1 \notin X - U_1$. Similarly for $(x_2, f(x_1)) \in X \times Y - G(f)$ there exist a $U_2 \in \pi G \alpha C(X)$ and a $V_2 \in RO(Y)$ such that $x_1 \in X - U_2$ and $x_2 \notin X - U_2$. Then $X - U_1, X - U_2 \in \pi G \alpha O(X)$ implies X is $\pi \alpha$-T_1.

Theorem 4.4.33: Let $f: (X, \tau) \to (Y, \sigma)$ have a $\pi \alpha$-regular graph $G(f)$. If f is surjective, then Y is weakly T_2.

Proof: Let y_1 and y_2 be two distinct points of Y. Since f is surjective, $f(x_1) = y_1$ for some $x_1 \in X$ and $(x_1, y_2) \in X \times Y - G(f)$. By Lemma 4.4.30, there exist a $U_1 \in \pi G \alpha C(X)$ and an $F_1 \in RO(Y)$ such that $(x_1, y_2) \in U_1 \times F_1$ and $f(U_1) \cap F_1 = \phi$. Then $y_2 \notin Y - F_1$ and
\(y_1 \in Y - F_1 \). Similarly for \((x_2, y_1) \in X \times Y - G(f)\) there exist \(U \in \pi G_\alpha C(X, x_2) \) and \(F_2 \in RO(Y, y_1) \) such that \(f(U) \cap F_2 = \emptyset \) and \(y_2 \in Y - F_2 \) and \(y_1 \notin Y - F_2 \). This implies that \(Y \) is weakly \(T_2 \).

Theorem 4.4.34: If \(f : (X, \tau) \to (Y, \sigma) \) is an injective almost contra-\(\pi g\alpha \)-continuous function with a regular graph, then \(X \) is \(\pi g\alpha \)-\(T_2 \).

Proof: Let \(x \) and \(y \) be distinct points of \(X \). Since \(f \) is injective, we have \(f(x) \neq f(y) \). Then \((x, f(y)) \in X \times Y - G(f)\). Since \(G(f) \) is \(\pi g\alpha \)-regular, by Lemma 4.4.30, there exist \(U \in \pi G_\alpha O(X, x) \) and a regular closed set \(V \) containing \(f(y) \) such that \(f(U) \cap V = \emptyset \). Since \(f \) is almost contra-\(\pi g\alpha \)-continuous, by Theorem 4.3.2, there exist \(G \in \pi G_\alpha O(X, y) \) such that \(f(G) \subseteq V \). Therefore we have \(f(U) \cap f(G) = \emptyset \). That is, \(U \cap G = \emptyset \). Hence \(X \) is \(\pi g\alpha \)-\(T_2 \).

\[\bullet \bullet \bullet \]