Decomposition Of $\pi g\alpha$-Sets

- Introduction
- $\pi g\alpha$-Locally Closed Sets
- $\pi G\alpha$-LC Continuous And $\pi G\alpha$-LC Irresolute Functions
- Decomposition Of $\pi g\alpha$-Continuity
CHAPTER V

DECOMPOSITION OF πg_{α}-SETS

5.1 Introduction

The notion of a locally closed set in a topological space was studied by many topologists [58, 82, 171]. Thereafter Balachandran [15], Arockia Rani[6], Nasef [113] and Park [147] studied the weaker forms of locally closed sets. Noiri[129], Ganster and Reilly[59], Nashef [2] established decomposition of α-continuity, A-continuity, α-continuity and semi-continuity respectively. In this chapter, we introduce three new classes of sets called πG_{α}-$LC(X,\tau)$, πG_{α}-$LC^*(X,\tau)$, πG_{α}-$LC^{**}(X,\tau)$ sets along with their respective continuity and irresoluteness. The notions of C_π-sets, C_{π^*}-sets and K_π-sets, K_{π^*}-sets are used to obtain decompositions of πg-continuity, πg-open maps, contra-πg-continuity and decompositions of πg_{α}-continuity, πg_{α}-open maps, contra-πg_{α}-continuity respectively.

5.2 πg_{α}-Locally Closed Sets

In this section we define πg_{α}-locally closed sets which contain the class of α-LC sets and study some of their properties.

Definition 5.2.1: A subset S of (X,τ) is called

a) πg_{α}-locally closed (briefly a πg_{α}-lc set) if $S = A \cap B$ where A is πg_{α}-open and B is πg_{α}-closed in X.

b) a πg_{α}-lc* set if there exist a πg_{α}-open set A and a closed set B of X such that $S = A \cap B$.

c) a πg_{α}-lc** set if there exist an open set A and a πg_{α}-closed set B of X such that $S = A \cap B$.

The collection of all πg_{α}-lc sets, πg_{α}-lc* sets and πg_{α}-lc** sets of (X,τ) will be denoted by πG_{α}-$LC(X,\tau), \pi G_{\alpha}$-$LC^*(X,\tau)$ and πG_{α}-$LC^{**}(X,\tau)$ respectively.
Proposition 5.2.2: i) If $A \in \text{LC}(X, \tau)$, then $A \in \pi G\alpha \text{-LC}(X, \tau)$.

ii) If $A \in \text{LC}(X, \tau)$, then $A \in \pi G\alpha \text{-LC}^*(X, \tau)$ and $\pi G\alpha \text{-LC}^{**}(X, \tau)$.

iii) If $A \in \pi G\alpha \text{-LC}^*(X, \tau)$, then $A \in \pi G\alpha \text{-LC}(X, \tau)$.

iv) If $A \in \alpha \text{-LC}(X, \tau)$, then $A \in \pi G\alpha \text{-LC}(X, \tau)$.

v) If $A \in \alpha \text{-LC}^*(X, \tau)$, then $A \in \pi G\alpha \text{-LC}^*(X, \tau)$.

vi) If $A \in \alpha \text{-LC}^{**}(X, \tau)$, then $A \in \pi G\alpha \text{-LC}^{**}(X, \tau)$.

Proof: Obvious.

Remark 5.2.3: Converse of the above need not be true as seen in the following examples.

Example 5.2.4:

i) Let $X = \{a, b, c, d\}$, $\tau = \{\phi, X, \{a\}\}$. Then $\text{LC}(X) = \{\phi, X, \{a\}, \{b, c, d\}\}$. $\pi G\alpha \text{-LC}(X) = \text{P}(X)$. This shows that a $\pi G\alpha$-locally closed set need not be locally closed.

ii) Let $X = \{a, b, c\}$, $\tau = \{\phi, X, \{a, b\}\}$. Then $\text{LC}(X, \tau) = \{\phi, X, \{a, b\}, \{c\}\}$. Then

Example 5.2.5: a) Let $X = \{a, b, c, d\}$, $\tau = \{\phi, X, \{a\}, \{b, c, d\}\}$. Then

i) $\{a, b, d\} \in \pi G\alpha \text{-LC}(X, \tau)$ but $\{a, b, d\} \notin \pi G\alpha \text{-LC}^*(X, \tau)$.

ii) $\{a, b, c\} \in \pi G\alpha \text{-LC}^{**}(X, \tau)$ but $\{a, b, c\} \notin \pi G\alpha \text{-LC}^*(X, \tau)$.

b) Let $X = \{a, b, c\}$, $\tau = \{\phi, X, \{a\}, \{b, c\}\}$. Then

i) $\{a, b\} \in \pi G\alpha \text{-LC}(X, \tau)$ but $\{a, b\} \notin \alpha \text{-LC}(X, \tau)$.

ii) $\{c\} \in \pi G\alpha \text{-LC}^*(X, \tau)$ but $\{c\} \notin \alpha \text{-LC}^*(X, \tau)$.

iii) $\{c\} \in \pi G\alpha \text{-LC}^{**}(X, \tau)$ but $\{c\} \notin \alpha \text{-LC}^{**}(X, \tau)$.

Remark 5.2.6: The above discussions are summarized in the following diagram
Proposition 5.2.7: a) Let \((X, \tau)\) be a \(\pi\alpha\)-space. Then

i) \(\pi\alpha-LC(X, \tau) = LC(X, \tau)\).

ii) \(\pi\alpha-LC(X, \tau) \subset GLC(X, \tau)\).

iii) \(\pi\alpha-LC(X, \tau) \subset \alpha-LC(X, \tau)\).

b) If \(\pi\alpha-O(X, \tau) = GO(X, \tau)\), then \(\pi\alpha-LC(X, \tau) = GLC(X, \tau)\).

c) If \(X\) is a \(\pi\alpha-T_{1/2}\) space, then \(\pi\alpha-LC(X, \tau) = \alpha-LC(X, \tau)\).

d) If \(X\) is a \(\pi\alpha\)-space, then \(\pi\alpha-LC(X, \tau) = \pi\alpha-LC*(X, \tau) = \pi\alpha-LC**(X, \tau)\).

Proof: a) i) Since every \(\pi\alpha\)-open set is open and every \(\pi\alpha\)-closed set is closed in \(X\), we have \(\pi\alpha-LC(X, \tau) \subset LC(X, \tau)\) and hence \(\pi\alpha-LC(X, \tau) = LC(X, \tau)\) .

ii) and iii) Since \(LC(X, \tau) \subset GLC(X, \tau)\) and \(LC(X, \tau) \subset \alpha-LC(X, \tau)\) for any space \(X\) and from i) the proof follows.

b) Let \(A \in \pi\alpha-LC(X, \tau)\). Then \(A = P \cap Q\) where \(P\) is \(\pi\alpha\)-open and \(Q\) is \(\pi\alpha\)-closed in \(X\). By hypothesis, \(P\) is \(g\)-open and \(Q\) is \(g\)-closed. Therefore \(A \in GLC(X, \tau)\) and \(\pi\alpha-LC(X, \tau) \subset GLC(X, \tau)\). Obviously \(GLC(X, \tau) \subset \pi\alpha-LC(X, \tau)\).

Hence \(\pi\alpha-LC(X, \tau) = GLC(X, \tau)\) .

c) Follows from definition 2.3.14 and from the fact that every \(\alpha\)-open set is \(\pi\alpha\)-open.

d) Obvious.
Remark 5.2.8: Converse of the above Proposition 5.2.7 (b),(c) does not hold as seen in the following example.

Example 5.2.9: Let \(X = \{a,b,c,d\} \), \(\tau = \{\emptyset,X,\{a\},\{b\},\{c\},\{a,b\},\{b,c\},\{a,b,c\}\} \) then
\[
\pi G_\alpha LC(X,\tau) = \alpha LC(X,\tau) = GLC(X,\tau) = P(X).
\]
But
\[
GO(X) = \{\emptyset,X,\{a\},\{b\},\{c\},\{a,b\},\{b,c\},\{a,b,c\}\} \neq \pi G_\alpha O(X).
\]
\[
\alpha O(X) = \{\emptyset,X,\{a\},\{b\},\{c\},\{b,d\},\{a,b,c\},\{a,b,d\},\{b,c,d\}\} \neq \pi G_\alpha O(X).
\]

Remark 5.2.10: For subsequent results in this chapter we assume that \(\pi G_\alpha C(X,\tau) \) is closed under finite intersections.

The hypothesis in Proposition 5.2.7 d) can be weakened as follows.

Proposition 5.2.11: If \(\pi G_\alpha O(X,\tau) \subset LC(X,\tau) \), then
\[
\pi G_\alpha LC(X,\tau) = \pi G_\alpha LC^*(X,\tau) = \pi G_\alpha LC^{**}(X,\tau).
\]

Proof: Let \(A \in \pi G_\alpha LC(X) \). Then \(A = P \cap Q \) where \(P \) is \(\pi g_\alpha \)-open and \(Q \) is \(\pi g_\alpha \)-closed. Since \(\pi G_\alpha O(X,\tau) \subset LC(X,\tau) \) implies \(\pi G_\alpha C(X,\tau) \subset LC(X,\tau) \), we have \(Q \) is locally closed. Let \(Q = M \cap N \) where \(M \) is open and \(N \) is closed. So \(A = (P \cap M) \cap N \) where \(P \cap M \) is \(\pi g_\alpha \)-open and \(N \) is closed. Hence \(A \in \pi G_\alpha LC^*(X) \). For any space \(X \), \(\pi G_\alpha LC^*(X) \subset \pi G_\alpha LC(X) \). Thus \(\pi G_\alpha LC(X) = \pi G_\alpha LC^*(X) \). Let \(B \in \pi G_\alpha LC(X) \). Then \(B = P \cap Q \) where \(P \) is \(\pi g_\alpha \)-open and \(Q \) is \(\pi g_\alpha \)-closed. Since \(\pi G_\alpha O(X,\tau) \subset LC(X,\tau) \) implies \(P \) is locally closed, we have \(P = M \cap N \) where \(M \) is open and \(N \) is closed. So \(A = M \cap (N \cap Q) \) where \(M \) is open and \(N \cap Q \) is \(\pi g_\alpha \)-closed. Hence \(B \in \pi G_\alpha LC^{**}(X) \). For any space \(X \), \(\pi G_\alpha LC^{**}(X) \subset \pi G_\alpha LC(X) \). Thus \(\pi G_\alpha LC(X,\tau) = \pi G_\alpha LC^{**}(X,\tau) \).

Now, we obtain a characterization for \(\pi G_\alpha LC^*(X,\tau) \) sets as follows:

Theorem 5.2.12: For a subset \(S \) of \((X,\tau)\) the following are equivalent:

1. \(S \in \pi G_\alpha LC^*(X,\tau) \).
2. \(S = P \cap cl(S) \) for some \(\pi g_\alpha \)-open set \(P \).
3. \(cl(S) - S \) is \(\pi g_\alpha \)-closed.
4. $S \cup (X-\text{cl}(S))$ is $\pi\alpha$-open.

Proof: 1\Rightarrow2: Let $S \in \pi\alpha-\text{LC}^*(X,\tau)$. Then there exist a $\pi\alpha$-open set P and a closed set F in (X,τ) such that $S = P \cap F$. Since $S \subseteq P$ and $S \subseteq \text{cl}(S)$, we have $S \subseteq P \cap \text{cl}(S)$.

Also, $S \subseteq F$ and F is closed implies $P \cap \text{cl}(S) \subseteq P \cap F = S$. Hence $S = P \cap \text{cl}(S)$.

2\Rightarrow1: Since P is $\pi\alpha$-open and $\text{cl}(S)$ is closed, $S = P \cap \text{cl}(S) \in \pi\alpha-\text{LC}^*(X,\tau)$.

2\Rightarrow3: Let $S = P \cap \text{cl}(S)$ for some $\pi\alpha$-open set P. We have $\text{cl}(S) - S = \text{cl}(S) \cap P^c$ which is $\pi\alpha$-closed.

3\Rightarrow2: Assume $\text{cl}(S) - S$ is $\pi\alpha$-closed. Let $P = X - (\text{cl}(S) - S)$. Then P is $\pi\alpha$-open and $S = P \cap \text{cl}(S)$.

3\Rightarrow4: Let $F = \text{cl}(S) - S$. Then F is $\pi\alpha$-closed, by assumption.

$X - F = X \cap \text{cl}(S) - S = S \cup (X - \text{cl}(S))$. Since $X - F$ is $\pi\alpha$-open, we have that $S \cup (X - \text{cl}(S))$ is $\pi\alpha$-open.

4\Rightarrow3: Let $U = S \cup (X - \text{cl}(S))$. Then U is $\pi\alpha$-open. This implies

$X = X - (S \cup (X - \text{cl}(S))) = (X - S) \cap \text{cl}(S) = \text{cl}(S) - S$ is $\pi\alpha$-closed.

Remark 5.2.13: It is not true that $S \in \pi\alpha-\text{LC}^*(X,\tau)$ if and only if $S \subseteq \text{int}(S \cup (X - \text{cl}(S)))$. Let $S = \{b,c\}$ be a subset of the topological space (X,τ) given in Example 5.2.5(a). Then $S \not\subseteq \text{int}(S \cup (X - \text{cl}(S)))$ but $S \in \pi\alpha-\text{LC}^*(X,\tau)$.

Definition 5.2.14: A topological space (X,τ) is called $\pi\alpha$-submaximal if every dense subset in (X,τ) is $\pi\alpha$-open.

Proposition 5.2.15: a) Let (X,τ) be a topological space. If X is submaximal, then it is $\pi\alpha$-submaximal.

b) A topological space (X,τ) is $\pi\alpha$-submaximal if and only if $\pi\alpha-\text{LC}^*(X,\tau) = P(X)$.

Proof: a) Obvious.

b) **Necessity**: Let $S \in P(X)$ and $U = S \cup (X - \text{cl}(S))$. Then $\text{cl}(U) = X$. U is dense in X and X is $\pi\alpha$-submaximal implies U is $\pi\alpha$-open. By Theorem 5.2.12, $S \in \pi\alpha-\text{LC}^*(X,\tau)$.

Sufficiency: Let S be a dense subset of (X,τ). Then $S \cup (X - \text{cl}(S)) = S \cup \varnothing = S$. Now
$S \in \mathcal{P}(X)$ implies $S \in \pi G\alpha-LC^*(X,\tau)$. By Theorem 5.2.12, $S \cup (X-\text{cl}(S)) = S$ is $\pi g\alpha$-open. Hence (X,τ) is $\pi g\alpha$-submaximal.

Remark 5.2.16: Converse of Proposition 5.2.15 a) is not true as seen in the following example.

Example 5.2.17: Let $X = \{a,b,c\}, \tau = \{\phi, X,\{a\},\{b,c\}\}$. Let $A = \{a,b\}$. Then A is dense in X such that A is $\pi g\alpha$-open but not open.

Proposition 5.2.18: For a subset S of (X,τ) if $S \in \pi G\alpha-LC**(X,\tau)$, then there exists an open set P such that $S = P \cap \text{cl}(S)$ where $\text{cl}(S)$ is the $\pi g\alpha$-closure of S.

Proof: Let $S \in \pi G\alpha-LC**(X,\tau)$. Then there exist an open set P and a $\pi g\alpha$-closed set F of (X,τ) such that $S = P \cap F$. Since $S \subset P$ and $S \subset \text{cl}(S)$, we have $S \subset P \cap \text{cl}(S)$. Since $\text{cl}(S) \subset F$, we have $P \cap \text{cl}(S) \subset P \cap F \subset S$. Thus $S = P \cap \text{cl}(S)$.

Theorem 5.2.19: Let A and B be any two subsets of (X,τ).

a) If $A \in \pi G\alpha-LC(X,\tau)$ and B is $\pi g\alpha$-open or $\pi g\alpha$-closed, then $A \cap B \in \pi G\alpha-LC(X,\tau)$.

b) If $A \in \pi G\alpha-LC**(X,\tau)$ and B is closed or open, then $A \cap B \in \pi G\alpha-LC**(X,\tau)$.

Proof: a) $A \in \pi G\alpha-LC(X,\tau)$ implies $A \cap B = (G \cap F) \cap B$ for some $\pi g\alpha$-open set G and $\pi g\alpha$-closed set F. If B is $\pi g\alpha$-open then $A \cap B = (G \cap B) \cap F \in \pi G\alpha-LC(X,\tau)$. If B is $\pi g\alpha$-closed, then $A \cap B = G \cap (B \cap F) \in \pi G\alpha-LC(X,\tau)$.

b) If $A \in \pi G\alpha-LC**(X,\tau)$, then there exist an open set G and a $\pi g\alpha$-closed set F of (X,τ) such that $A \cap B = (G \cap F) \cap B$. If B is open, then $A \cap B = (G \cap B) \cap F \in \pi G\alpha-LC**(X,\tau)$. If B is closed, then $A \cap B = G \cap (F \cap B) \in \pi G\alpha-LC**(X,\tau)$.

Theorem 5.2.20: If $A \in \pi G\alpha-LC^*(X,\tau)$ and $B \in \pi G\alpha-LC^*(X,\tau)$, then $A \cap B \in \pi G\alpha-LC^*(X,\tau)$.

Proof: If $A, B \in \pi G\alpha-LC^*(X,\tau)$ then by Theorem 5.2.12, there exist $\pi g\alpha$-open sets P and Q such that $A = P \cap \text{cl}(A)$ and $B = Q \cap \text{cl}(B)$. $P \cap Q$ is also $\pi g\alpha$-open. Then $A \cap B = (P \cap Q) \cap (A \cap \text{cl}(A) \cap \text{cl}(B)) \in \pi G\alpha-LC^*(X,\tau)$.
Proposition 5.2.21: Let A and Z be any two subsets of (X, τ) and let $A \subset Z$. If Z is regular open and π_{α}-closed in (X, τ) and if $A \in \pi_{\alpha_{*}}LC^{*}(Z, \tau / Z)$, then $A \in \pi_{\alpha_{*}}LC^{*}(X, \tau)$.

Proof: If $A \in \pi_{\alpha_{*}}LC^{*}(Z, \tau / Z)$ then by Theorem 5.2.12, there is a π_{α}-open set G in $(Z, \tau / Z)$ such that $A = G \cap cl_{Z}(A)$ where $cl_{Z}(A) = Z \cap cl(A)$. By Proposition 2.2.19, G is π_{α}-open in X. We have $A = (G \cap Z) \cap cl(A) \in \pi_{\alpha_{*}}LC^{*}(X, \tau)$.

Remark 5.2.22: The following examples show that one of the assumptions in the above theorem. That is, Z is regular open in (X, τ) cannot be removed.

Example 5.2.23: Let $X = \{a, b, c, d\}$, $\tau = \{\emptyset, X, \{b\}, \{c, d\}, \{b, c, d\}\}$. Let $Z = A = \{a, b, d\}$.

$\tau / Z = \{\emptyset, \{b\}, \{d\}, \{b, d\}, Z\}$ where Z is not regular open in X. Then $A \in \pi_{\alpha_{*}}LC^{*}(Z, \tau / Z)$ but $A \notin \pi_{\alpha_{*}}LC^{*}(X, \tau)$.

Theorem 5.2.24: Let A and Z be any two subsets of (X, τ) and let $A \subset Z$ such that Z is π_{α}-closed and regular open in X. Then

1) if $A \in \pi_{\alpha_{*}}LC(Z, \tau / Z)$, then $A \in \pi_{\alpha_{*}}LC(X, \tau)$.

2) if $A \in \pi_{\alpha_{*}}LC^{**}(Z, \tau / Z)$, then $A \in \pi_{\alpha_{*}}LC^{**}(X, \tau)$.

Proof: 1) Let $A \in \pi_{\alpha_{*}}LC(Z, \tau / Z)$. Then $A = G \cap F$ where G is π_{α}-open and F is π_{α}-closed in $(Z, \tau / Z)$. Then by Proposition 2.2.19, G and F are π_{α}-open and π_{α}-closed sets in (X, τ) respectively. Hence $A = G \cap F \in \pi_{\alpha_{*}}LC(X, \tau)$.

2) Let $A \in \pi_{\alpha_{*}}LC^{**}(Z, \tau / Z)$. Then $A = G \cap F$ where G is open and F is π_{α}-closed in $(Z, \tau / Z)$. Then by Proposition 2.2.19, G is open and F is π_{α}-closed in (X, τ). Hence $A = G \cap F \in \pi_{\alpha_{*}}LC^{**}(X, \tau)$.

Proposition 5.2.25: Let $A, B \in \pi_{\alpha_{*}}LC^{*}(X, \tau)$. If A and B are separated in (X, τ), then $A \cup B \in \pi_{\alpha_{*}}LC^{*}(X, \tau)$.

Proof: Since $A, B \in \pi_{\alpha_{*}}LC^{*}(X, \tau)$ by Theorem 5.2.12, there exist π_{α}-open sets P and Q of (X, τ) such that $A = P \cap cl(A)$ and $B = Q \cap cl(B)$. Put $U = P \cap (X - cl(B))$ and $V = Q \cap (X - cl(A))$. Then U and V are π_{α}-open subsets of (X, τ). Then $A = U \cup cl(A)$,
\[B = V \cap \text{cl}(B), U \cap \text{cl}(B) = \emptyset, V \cap \text{cl}(A) = \emptyset \text{ hold. Consequently.} \]
\[A \cup B = (U \cup V) \cap (\text{cl}(A \cup B)) \text{ showing that } A \cup B \in \pi\alpha-LC^*(X, \tau). \]

Proposition 5.2.26: Let \(\{Z_i : i \in A\} \) be a finite \(\pi \)-cover of \((X, \tau)\) and let \(A \) be a subset of \((X, \tau)\). If \(A \cap Z_i \in \pi\alpha-LC^*(Z_i, \tau / Z_i) \) for each \(i \in A \), then \(A \in \pi\alpha-LC^*(X, \tau) \).

Proof: For each \(i \in A \), there exist an open set \(U_i \in \tau \) and \(\pi\alpha\text{-closed set } F_i \) of \((Z_i, \tau / Z_i)\) such that \(A \cap Z_i = (U_i \cap F_i) \cap Z_i = U_i \cap (F_i \cap Z_i) \). Then \(A = \cup\{A \cap Z_i : i \in A\} = \left[\cup\{U_i : i \in A\} \right] \cap \left[\cup\{Z_i \cap F_i : i \in A\} \right] \) and hence by Proposition 2.2.10, \(A \in \pi\alpha-LC^*(X, \tau) \).

Theorem 5.2.27: Let \(X, Y \) be topological spaces which are \(T_\pi \)-spaces.

i) If \(A \in \pi\alpha-LC(X, \tau) \) and \(B \in \pi\alpha-LC(Y, \sigma) \), then \(A \times B \in \pi\alpha-LC(X \times Y, \tau \times \sigma) \).

ii) If \(A \in \pi\alpha-LC^*(X, \tau) \) and \(B \in \pi\alpha-LC^*(Y, \sigma) \), then \(A \times B \in \pi\alpha-LC^*(X \times Y, \tau \times \sigma) \).

iii) If \(A \in \pi\alpha-LC^{**}(X, \tau) \) and \(B \in \pi\alpha-LC^{**}(Y, \sigma) \), then \(A \times B \in \pi\alpha-LC^{**}(X \times Y, \tau \times \sigma) \).

Proof: i) Let \(A \in \pi\alpha-LC(X, \tau) \) and \(B \in \pi\alpha-LC(Y, \sigma) \).

Then there exist \(\pi\alpha\text{-open sets } V, V^1 \) and \(\pi\alpha\text{-closed sets } W, W^1 \) of \((X, \tau)\) and \((Y, \sigma)\) respectively such that \(A = V \cap W \) and \(B = V^1 \cap W^1 \). Then \(A \times B = (V \cap W) \times (V^1 \cap W^1) = (V \times V^1) \cap (W \times W^1) \) holds and hence \(A \times B \in \pi\alpha-LC(X \times Y, \tau \times \sigma) \).

Proofs of (ii) and (iii) are similar to that of (i).

5.3 \(\pi\alpha-LC \) Continuous And \(\pi\alpha-LC \) Irresolute Functions

In this section, we define \(\pi\alpha-LC \) continuous and \(\pi\alpha-LC \) irresolute functions and obtain pasting Lemma for \(\pi\alpha-LC^{**} \) continuous functions and \(\pi\alpha-LC^{**} \) irresolute functions.

Definition 5.3.1: A function \(f : (X, \tau) \to (Y, \sigma) \) is called

i) \(\pi\alpha-LC \) continuous if \(f^{-1}(V) \in \pi\alpha-LC(X, \tau) \) for every \(V \in \sigma \).

ii) \(\pi\alpha-LC^* \) continuous if \(f^{-1}(V) \in \pi\alpha-LC^*(X, \tau) \) for every \(V \in \sigma \).
iii) \(\pi \alpha - \text{LC}^{**} \text{continuous} \) if \(f^{-1}(V) \in \pi \alpha - \text{LC}^{**}(X, \tau) \) for every \(V \in \sigma \).

iv) \(\pi \alpha - \text{LC} \text{ irresolute} \) if \(f^{-1}(V) \in \pi \alpha - \text{LC}(X, \tau) \) for every \(V \in \pi \alpha - \text{LC}(Y, \sigma) \).

v) \(\pi \alpha - \text{LC}^{*} \text{ irresolute} \) if \(f^{-1}(V) \in \pi \alpha - \text{LC}^{*}(X, \tau) \) for every \(V \in \pi \alpha - \text{LC}^{*}(Y, \sigma) \).

vi) \(\pi \alpha - \text{LC}^{**} \text{ irresolute} \) if \(f^{-1}(V) \in \pi \alpha - \text{LC}^{**}(X, \tau) \) for every \(V \in \pi \alpha - \text{LC}^{**}(Y, \sigma) \).

Proposition 5.3.2: If \(f:(X, \tau) \rightarrow (Y, \sigma) \) is \(\pi \alpha - \text{LC} \text{ irresolute} \), then it is \(\pi \alpha - \text{LC} \text{ continuous} \).

Proof: Let \(V \) be open in \(Y \). Then \(V \in \pi \alpha - \text{LC}(Y, \sigma) \). By assumption,
\(f^{-1}(V) \in \pi \alpha - \text{LC}(X, \tau) \). Hence \(f \) is \(\pi \alpha - \text{LC} \text{ continuous} \).

Proposition 5.3.3: Let \(f:(X, \tau) \rightarrow (Y, \sigma) \) be a function.

1) If \(f \) is \(\text{LC-continuous} \), then \(f \) is \(\pi \alpha - \text{LC}^{*} \text{ continuous} \) and \(\pi \alpha - \text{LC}^{**} \text{ continuous} \).

2) If \(f \) is \(\pi \alpha - \text{LC}^{*} \text{ continuous} \), then \(f \) is \(\pi \alpha - \text{LC} \text{ continuous} \).

3) If \(f \) is \(\pi \alpha - \text{LC}^{*} \text{ irresolute} \), then \(f \) is \(\pi \alpha - \text{LC}^{*} \text{ continuous} \).

Remark 5.3.4: Converse of the above need not be true as can be seen in the following examples.

Examples 5.3.5:

1) Let \(X = \{a, b, c\}, \tau = \{\phi, X, \{a\}, \{b\}, \{a, b\}\} \). Let \(f:(X, \tau) \rightarrow (X, \sigma) \) be the identity mapping. Then \(f \) is \(\pi \alpha - \text{LC}^{*} \text{ continuous} \) and \(\pi \alpha - \text{LC}^{**} \text{ continuous} \) but not \(\text{LC-continuous} \).

2) Let \(X = \{a, b, c, d\}, \tau = \{\phi, X, \{b\}, \{c, d\}, \{b, c, d\}\} \). \(\sigma = \{\phi, X, \{c\}, \{a, b, d\}\} \) and \(f:(X, \tau) \rightarrow (X, \sigma) \) be the identity mapping. Then \(f \) is \(\pi \alpha - \text{LC} \text{ continuous} \) but not \(\pi \alpha - \text{LC}^{*} \text{ continuous} \) since \(\{a, b, d\} \in (X, \sigma) \) but \(\{a, b, d\} \not\in \pi \alpha - \text{LC}^{*}(X, \tau) \).

3) Let \(X = \{a, b, c, d\}, \tau = \{\phi, X, \{b\}, \{c, d\}, \{b, c, d\}\} \). \(\sigma = \{\phi, X, \{b\}\} \) and \(f:(X, \tau) \rightarrow (X, \sigma) \) be the identity mapping. Then \(f \) is \(\pi \alpha - \text{LC}^{*} \text{continuous} \) but not \(\pi \alpha - \text{LC}^{*} \text{ irresolute} \) since \(\{a, b, d\} \in \pi \alpha - \text{LC}^{*}(X, \sigma) \) but \(\{a, b, d\} \not\in \pi \alpha - \text{LC}^{*}(X, \tau) \).

Proposition 5.3.6: Any map defined on a door space is \(\pi \alpha - \text{LC} \text{ irresolute} \).

Proof: Let \((X, \tau) \) be a door space and \((Y, \sigma) \) be any space. Define a map \(f:(X, \tau) \rightarrow (Y, \sigma) \). Let \(A \in \pi \alpha - \text{LC}(Y, \sigma) \). Then \(f^{-1}(A) \) is either open or closed in \((X, \tau) \). In both cases \(f^{-1}(A) \in \pi \alpha - \text{LC}(X, \tau) \). Hence \(f \) is \(\pi \alpha - \text{LC} \text{ irresolute} \).
Theorem 5.3.7: A topological space \((X, \tau)\) is \(\pi\alpha\)-submaximal if and only if every function having \((X, \tau)\) as its domain is \(\pi\alpha\)-LC* continuous.

Proof: Suppose that \(f:(X, \tau) \rightarrow (Y, \sigma)\) is a function. By Theorem 5.2.15 b), we have \(f^{-1}(V) \in P(X) = \pi\alpha\)-LC\((X, \tau)\) for each open set \(V\) of \((Y, \sigma)\). Therefore \(f\) is \(\pi\alpha\)-LC* continuous. Conversely, let every map having \((X, \tau)\) as its domain be \(\pi\alpha\)-LC* continuous. Let \(Y = \{0, 1\}\) be the Sierpinski space with topology \(\sigma = \{Y, \emptyset, \{0\}\}\). Let \(V\) be a subset of \((X, \tau)\) and \(f:(X, \tau) \rightarrow (Y, \sigma)\) be a function defined by \(f(x) = 0\) for every \(x \in V\) and \(f(x) = 1\) for every \(x \notin V\). By assumption, \(f\) is \(\pi\alpha\)-LC* continuous and hence \(f^{-1}\{0\} = V \in \pi\alpha\)-LC\((X, \tau)\). Therefore we have \(P(X) = \pi\alpha\)-LC\((X, \tau)\) and by Theorem 5.2.15 b), \((X, \tau)\) is \(\pi\alpha\)-submaximal.

Proposition 5.3.8: If \(f:(X, \tau) \rightarrow (Y, \sigma)\) is \(\pi\alpha\)-LC** continuous and a subset \(B\) is regular open, \(\pi\alpha\)-closed in \((X, \tau)\), then the restriction of \(f\) to \(B\) say \(f|B: (B, \tau|B) \rightarrow (Y, \sigma)\) is \(\pi\alpha\)-LC** continuous.

Proof: Let \(V\) be an open set of \((Y, \sigma)\). Then \(f^{-1}(V) = G \cap F\) for some open set \(G\) and \(\pi\alpha\)-closed set \(F\) of \((X, \tau)\). Now \(G \cap B \subseteq \tau|B\) and \((F \cap B)\) is a \(\pi\alpha\)-closed subset of \((B, \tau|B)\). But \((f|B)^{-1}(V) = (G \cap B) \cap (F \cap B)\). Hence \((f|B)^{-1}(V) \in \pi\alpha\)-LC\((B, \tau|B)\). This implies that \(f|B\) is \(\pi\alpha\)-LC** continuous.

We recall the definition of the combination of two functions: Let \(X = A \cup B\) and \(f: A \rightarrow Y\) and \(h: B \rightarrow Y\) be two functions. We say that \(f\) and \(h\) are compatible if \(f|A \cap B = h|A \cap B\). If \(f: A \rightarrow Y\) and \(h: B \rightarrow Y\) are compatible, then the function \(f \vee h: X \rightarrow Y\) defined as \((f \vee h)(x) = f(x)\) for every \(x \in A\), \((f \vee h)(x) = h(x)\) for every \(x \in B\) is called the combination of \(f\) and \(h\).

Pasting Lemma for \(\pi\alpha\)-LC** continuous (resp. \(\pi\alpha\)-LC**-irresolute) functions.

Theorem 5.3.9: Let \(X = A \cup B\), where \(A\) and \(B\) are \(\pi\alpha\)-closed and regular open subsets of \((X, \tau)\) and \(f: (A, \tau|A) \rightarrow (Y, \sigma)\) and \(h: (B, \tau|B) \rightarrow (Y, \sigma)\) be compatible functions.

a) If \(f\) and \(h\) are \(\pi\alpha\)-LC** continuous, then \((f \vee h): X \rightarrow Y\) is \(\pi\alpha\)-LC** continuous.

b) If \(f\) and \(h\) are \(\pi\alpha\)-LC** irresolute, then \((f \vee h): X \rightarrow Y\) is \(\pi\alpha\)-LC** irresolute.
Proof: \(a) \) Let \(V \in \sigma \). Then \((f \vee h)^{-1}(V) \cap A = f^{-1}(V) \) and \((f \vee h)^{-1}(V) \cap B = h^{-1}(V)\). By assumption, \((f \vee h)^{-1}(V) \cap A \in \pi \alpha-LC^*(A, \tau/A)\) and \((f \vee h)^{-1}(V) \cap B \in \pi \alpha-LC^*(B, \tau/B)\). Therefore by Proposition 5.2.26, \((f \vee h)^{-1}(V) \in \pi \alpha-LC^*(X, \tau)\) and hence \(f \vee h \) is \(\pi \alpha-LC^* \)-continuous.

\(b) \) Proof is similar to that of \(a) \).

Next we have the theorem concerning the composition of functions.

Theorem 5.3.10: Let \(f: (X, \tau) \to (Y, \sigma) \) and \(g: (Y, \sigma) \to (Z, \eta) \) be two functions. Then

\(a) \) \(g \circ f \) is \(\pi \alpha-LC \)- irresolute if \(f \) and \(g \) are \(\pi \alpha-LC \)- irresolute.

\(b) \) \(g \circ f \) is \(\pi \alpha-LC^* \)- irresolute if \(f \) and \(g \) are \(\pi \alpha-LC^* \)- irresolute.

\(c) \) \(g \circ f \) is \(\pi \alpha-LC^* \)- irresolute if \(f \) and \(g \) are \(\pi \alpha-LC^* \)- irresolute.

\(d) \) \(g \circ f \) is \(\pi \alpha-LC \)- continuous if \(f \) is \(\pi \alpha-LC \)- irresolute and \(g \) is \(\pi \alpha-LC \)- continuous.

\(e) \) \(g \circ f \) is \(\pi \alpha-LC^* \)- continuous if \(f \) is \(\pi \alpha-LC^* \)- continuous and \(g \) is continuous.

\(f) \) \(g \circ f \) is \(\pi \alpha-LC^* \)- continuous if \(f \) is \(\pi \alpha-LC^* \)- continuous and \(g \) is \(\pi \alpha-LC^* \)- continuous.

Definition 5.3.11: A function \(f: (X, \tau) \to (Y, \sigma) \) is called sub \(\pi \alpha-LC^* \)-continuous if there exists a basis \(B \) for \((Y, \sigma) \) such that \(f^{-1}(U) \in \pi \alpha-LC^*(X, \tau) \) for each \(U \in B \).

Proposition 5.3.12: Let \(f: (X, \tau) \to (Y, \sigma) \) be a function.

\(a) \) \(f \) is sub-\(\pi \alpha-LC^* \)-continuous if and only if there is a subbasis \(C \) of \((Y, \sigma) \) such that \(f^{-1}(U) \in \pi \alpha-LC^*(X, \tau) \) for each \(U \in C \).

\(b) \) If \(f \) is sub-LC-continuous, then \(f \) is sub-\(\pi \alpha-LC^* \)-continuous.

Proof: \(a) \) By assumption, there exists a basis \(B \) for \((Y, \sigma) \) such that \(f^{-1}(U) \in \pi \alpha-LC^*(X, \tau) \) for each \(U \in B \). Since \(B \) is also a subbasis for \((Y, \sigma) \), the proof is obvious.

Conversely, for a subbasis \(C \), let \(C_\delta = \{ A \subset Y : A \text{ is an intersection of finitely many sets belonging to } C \} \). Then \(C_\delta \) is a basis for \((Y, \sigma) \). For \(U \in C_\delta \), \(U = \cap \{ F_i : F_i \in C, i \in \Lambda \} \) where...
\(\Lambda \) is a finite set. By assumption and Proposition 5.2.20, we have

\[
\Gamma^{-1}(U) = \bigcap \{\Gamma^{-1}(F_i) : i \in \Lambda \} \in \pi G\alpha-LC^*(X,\tau).
\]

b) follows from the Definition 5.3.11 and the fact that every LC \((X,\tau)\) is \(\pi G\alpha-LC^*(X,\tau)\).

Remark 5.3.13: Converse of Proposition 5.3.12 a) is not true as seen in the following example.

Example 5.3.14: Let \(X = Y = \{a,b,c\} \), \(\tau = \{\phi, X, \{a\}\} \) and \(\sigma \) be the topology induced by a base \(B \) of \(Y \). Let \(f : (X,\tau) \to (Y,\sigma) \) be the identity function. If \(B = \{Y,\{c\}\} \), then \(f \) is sub-\(\pi G\alpha-LC^*\) continuous but not sub LC-continuous since \(f^{-1}(\{c\}) = \{c\} \notin LC(X,\tau) \).

5.4 Decomposition Of \(\pi g\alpha\)-Continuity

In this section, we introduce the notions of \(C_\pi \)-sets, \(C_\pi^* \)-sets, \(K_\pi \)-sets and \(K_\pi^* \)-sets to obtain decompositions of \(\pi g\alpha\)-continuity and \(\pi g\alpha\)-continuity.

Definition 5.4.1: A subset \(S \) of \((X,\tau)\) is called a

1. \(C_\pi \)-set if \(S = G \cap F \) where \(G \) is \(\pi g\)-open and \(F \) is a t-set
2. \(C_\pi^* \)-set if \(S = G \cap F \) where \(G \) is \(\pi g\)-open and \(F \) is a \(\alpha^*\)-set.
3. \(K_\pi \)-set if \(S = G \cap F \) where \(G \) is \(\pi g\alpha\)-open and \(F \) is a t-set.
4. \(K_\pi^* \)-set if \(S = G \cap F \) where \(G \) is \(\pi g\alpha\)-open and \(F \) is a \(\alpha^*\)-set.

Proposition 5.4.2:

1. Every B set is a \(C_\pi \)-set.
2. Every B- set is a \(C_\pi^* \)-set
3. Every C- set is a \(C_\pi \)-set.
4. Every C- set is a \(C_\pi^* \)-set.
5. Every \(C_\pi \)-set is a \(C_\pi^* \)-set.
6. Every \(C_\pi \)-set is a \(K_\pi \)-set.
7. Every C_π-set is a K_π-set.
8. Every C_τ-set is a C_τ-set.
9. Every C_η-set is a C_τ-set.
10. Every C_π-set is a K_π-set.
11. Every K_π-set is a K_π-set.

Remark 5.4.3: Converse of the above need not be true as seen in the following examples.

Example 5.4.4: Let $X = \{a,b,c\}, \tau = \{\emptyset, X, \{a,b\}\}$. Let $A = \{a,c\}$.
Then A is a C_π-set and C_η-set. But A is neither a B-set nor a C-set.

Example 5.4.5: Let $X = \{a,b,c,d\}, \tau = \{\emptyset, X, \{a\}, \{b,c\}, \{a,b,c\}\}$. Let $A = \{c,d\}$. Then A is a C_τ-set, C_η-set, C_π-set and K_π-set. But A is neither a C_π-set nor a K_π-set.

Example 5.4.6: Let $X = \{a,b,c,d\}, \tau = \{\emptyset, X, \{a\}, \{c,d\}, \{a,c,d\}, \{d\}, \{a,d\}\}$. Let $A = \{a,b,d\}$. Then A is a K_π-set and K_η-set. But A is neither C_π-set, nor C_π^*-set, nor C_τ-set, nor C_π-set, nor C-set.

Remark 5.4.7: K_π-set and C_π-set are independent concepts follows from Examples 5.4.6 and 5.4.5 respectively.

Remark 5.4.8: K_π-set and C_π-set are independent concepts follow from Examples 5.4.6 and 5.4.5 respectively.

Proposition 5.4.9: If S is a $\pi\alpha$-open set, then
i) S is a K_π-set.
ii) S is a K_τ^*-set.

Remark 5.4.10: Converse of the above need not be true as seen in the following example.
Example 5.4.11: Let \(X = \{a, b, c\} \) and \(\tau = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}\} \). Then \(A = \{c\} \) is a \(K_T \)-set and a \(K_{\pi} \)-set but not \(\pi g\alpha \)-open.

The above discussions are summarized in the following diagram:

```
\[ \text{C-set} \]
\[ \text{Cr-set} \]
\[ \text{B-set} \]
\[ \text{K}_{\pi} \text{-set} \]
\[ \text{C}_{\pi} \text{-set} \]
\[ \text{C}_{\pi^*} \text{-set} \]
\[ \text{K}_{\pi^*} \text{-set} \]
```

Proposition 5.4.12: Let \(A \) and \(B \) be \(K_{\pi} \)-sets in \(X \). Then \(A \cap B \) is a \(K_{\pi} \)-set in \(X \).

Proof: Since \(A \) and \(B \) are \(K_{\pi} \)-sets, \(A = G_1 \cap F_1 \) and \(B = G_2 \cap F_2 \) where \(G_1 \) and \(G_2 \) are \(\pi g\alpha \)-open and \(F_1 \) and \(F_2 \) are t-sets. Since intersection of two \(\pi g\alpha \)-open sets is \(\pi g\alpha \)-open and intersection of t-sets is a t-set, it follows that \(A \cap B \) is a \(K_{\pi} \)-set in \(X \).

Remark 5.4.13: a) The union of two \(K_{\pi} \)-sets need not be a \(K_{\pi} \)-set.

b) Complement of a \(K_{\pi} \)-set need not be a \(K_{\pi} \)-set.

Example 5.4.14: In Example 5.4.5

a) \(A = \{a, c\} \) and \(B = \{d\} \) are \(K_{\pi} \)-sets. \(A \cup B = \{a, c, d\} \) is not a \(K_{\pi} \)-set.
b) $X - \{a,c\} = \{b,d\}$ is not a K_x-set.

Proposition 5.4.15: Let A and B be C_x-sets in X. Then $A \cap B$ is C_x-set in X.

Remark 5.4.16: The union of two C_x-sets need not be a C_x-set and the complement of a C_x-set need not be a C_x-set follows from Example 5.4.14.

Definition 5.4.17: A function $f: X \to Y$ is said to be
i) C_x-continuous if $f^{-1}(V)$ is a C_x-set for every open set V in Y.
ii) C_x-continuous if $f^{-1}(V)$ is a C_x-set for every open set V in Y.
iii) K_x-continuous if $f^{-1}(V)$ is a K_x-set for every open set V in Y.
iv) K_x-continuous if $f^{-1}(V)$ is a K_x-set for every open set V in Y.

Proposition 5.4.18: i) Every C_x-continuous function is C_x-continuous.
ii) Every C_x-continuous function is K_x-continuous.
iii) Every K_x-continuous function is C_x-continuous.
iv) Every K_x-continuous function is K_x-continuous.

Proof: Follows from Proposition 5.4.2 and Definition 5.4.17.

Remark 5.4.19: Converse of the above need not be true as can be seen from the following examples.

Example 5.4.20: a) Let $X = \{a,b,c,d\}, \tau = \{\emptyset, X, \{a\}, \{b,c\}, \{a,b,c\}\}$, $\sigma = \{\emptyset, X, \{c,d\}\}$ and $f:(X, \tau) \to (X, \sigma)$ be the identity mapping. Then f is C_x-continuous but not C_x-continuous.

b) Let $X = \{a,b,c,d\}, \tau = \{\emptyset, X, \{a\}, \{c,d\}, \{a,c,d\}, \{d\}, \{a,d\}\}$, $\sigma = \{\emptyset, \{a,b,d\}, X\}$ and $f:(X, \tau) \to (X, \sigma)$ be the identity mapping. Then f is K_x-continuous but not C_x-continuous.
c) Let $X = \{a,b,c,d\}$, $\tau = \{\emptyset, \{a\}, \{b,c\}, \{a,b,c\}, X\}$, $\sigma = \{\emptyset, \{c\}, \{c,d\}, X\}$ and $f : (X, \tau) \to (X, \sigma)$ be the identity mapping. Then f is K^*_τ-continuous but not K^*_σ-continuous.

d) Let $X = \{a,b,c,d\}$, $\tau = \{\emptyset, X, \{a\}, \{a,c,d\}, \{c,d\}, \{a,d\}\}$, $\sigma = \{\emptyset, \{a\}, \{a,b,d\}, X\}$ and $f : (X, \tau) \to (X, \sigma)$ be the identity mapping. Then f is K^*_σ-continuous but not C^*_σ-continuous.

Remark 5.4.21: The above discussions are summarized in the following implications:

\[
C^*_\tau\text{-continuity} \Rightarrow C^*_\sigma\text{-continuity} \\
K^*_\tau\text{-continuity} \Rightarrow K^*_\sigma\text{-continuity}
\]

Definition 5.4.22: A map $f : X \to Y$ is said to be

i) K^*_τ-open if $f(U)$ is a K^*_τ-set in Y for each open set U in X.

ii) C^*_τ-open if $f(U)$ is a C^*_τ-set in Y for each open set U in X.

iii) C^*_σ-open if $f(U)$ is a C^*_σ-set in Y for each open set U in X.

iv) K^*_σ-open if $f(U)$ is a K^*_σ-set in Y for each open set U in X.

Definition 5.4.23: A map $f : X \to Y$ is said to be

i) contra-K^*_τ-continuous if $f^{-1}(V)$ is a K^*_τ-set for every closed set V in Y.

ii) contra-C^*_τ-continuous if $f^{-1}(V)$ is a C^*_τ-set for every closed set V in Y.

iii) contra-C^*_σ-continuous if $f^{-1}(V)$ is a C^*_σ-set for every closed set V in Y.

iv) contra-K^*_σ-continuous if $f^{-1}(V)$ is a K^*_σ-set for every closed set V in Y.

Lemma 5.4.24: A subset A of a space X is

a) πg-open if and only if $F \subseteq \text{int}(A)$ whenever F is π-closed and $F \subseteq A$ [42].

b) $\pi g p$-open if and only if $F \subseteq \text{pint}(A)$ whenever F is π-closed and $F \subseteq A$ [146].

Theorem 5.4.25: A subset S of X is

a) πg-open if and only if it is both $\pi g p$-open and a C^*_τ-set in X.

91
b) \(\pi_{g}\)-open if and only if it is both \(\pi_{g}\alpha\)-open and a \(C_{\pi}\)-set in \(X \).

c) \(\pi_{g}\)-open if and only if it is both \(\pi_{g}\alpha\)-open and a \(C_{\pi}\)-set in \(X \).

Proof :
a) Necessity: Obvious.

Sufficiency: Assume that \(S \) is both \(\pi_{g}\)-open and a \(C_{\pi}\)-set in \(X \). By assumption, \(S \) is a \(C_{\pi}\)-set in \(X \) implies \(S = A \cap B \) where \(A \) is \(\pi_{g}\)-open and \(B \) is a \(t\)-set. Let \(F \) be a \(\pi\)-closed set such that \(F \subset S \). Since \(S \) is \(\pi_{g}\)-open, \(F \subset S \) implies \(F \subset \text{pint}(S) \subset \text{int}(B) \). Then \(A \) is \(\pi_{g}\)-open and \(F \subset S \subset A \) implies \(F \subset \text{int}(A) \). Hence \(F \subset \text{int}(A) \cap \text{int}(B) = \text{int}(A \cap B) = \text{int}(S) \). Hence \(S \) is \(\pi_{g}\)-open.

b) **Necessity:** Obvious.

Sufficiency: Let \(S \) be both \(\pi_{g}\alpha\)-open and a \(C_{\pi}\)-set in \(X \). Since \(S \) is a \(C_{\pi}\)-set, \(S = A \cap B \) where \(A \) is \(\pi_{g}\)-open and \(B \) is a \(t\)-set. Let \(F \) be a \(\pi\)-closed set such that \(F \subset S \). Since \(S \) is \(\pi_{g}\alpha\)-open, \(F \subset S \) implies \(F \subset \alpha\text{int}(S) \subset \text{int}(B) \). Then \(A \) is \(\pi_{g}\)-open and \(F \subset S \subset A \) implies \(F \subset \text{int}(A) \). Hence \(F \subset \text{int}(A) \cap \text{int}(B) = \text{int}(A \cap B) = \text{int}(S) \).

c) **Necessity:** Obvious.

Sufficiency: Assume \(S \) is both \(\pi_{g}\alpha\)-open and a \(C_{\pi}\)-set in \(X \). Since \(S \) is a \(C_{\pi}\)-set, \(S = A \cap B \) where \(A \) is \(\pi_{g}\)-open and \(B \) is \(\alpha^{\pi}\)-set in \(X \). Let \(F \) be a \(\pi\)-closed set such that \(F \subset S \). Since \(S \) is \(\pi_{g}\alpha\)-open, \(F \subset S \) implies \(F \subset \alpha\text{int}(S) \subset \text{int}(B) \). Then \(A \) is \(\pi_{g}\)-open and \(F \subset S \subset A \) implies \(F \subset \text{int}(A) \). Hence \(F \subset \text{int}(A) \cap \text{int}(B) = \text{int}(A \cap B) = \text{int}(S) \).

Theorem 5.4.26: A mapping \(f : X \rightarrow Y \) is

a) \(\pi_{g}\)-continuous if and only if it is both \(\pi_{g}\)-continuous and \(C_{\pi}\)-continuous .

b) \(\pi_{g}\)-continuous if and only if it is both \(\pi_{g}\alpha\)-continuous and \(C_{\pi}\)-continuous .

c) \(\pi_{g}\)-continuous if and only if it is both \(\pi_{g}\alpha\)-continuous and \(C_{\pi}^{\pi}\)-continuous .

Proof : Follows from Theorem 5.4.25.

Theorem 5.4.27: A map \(f : X \rightarrow Y \) is

a) \(\pi_{g}\)-open if and only if it is both \(\pi_{g}\)-open and \(C_{\pi}\)-open .

b) \(\pi_{g}\)-open if and only if it is both \(\pi_{g}\alpha\)-open and \(C_{\pi}\)-open .

c) \(\pi_{g}\)-open if and only if it is both \(\pi_{g}\alpha\)-open and \(C_{\pi}^{\pi}\)-open .

92
Theorem 5.4.28: A mapping $f : X \to Y$ is

a) contra-πg-continuous if and only if f is both contra-πgp-continuous and contra-C_π-continuous.

b) contra-πg-continuous if and only if f is both contra-$\pi g\alpha$-continuous and contra-C_π-continuous.

c) contra-πg-continuous if and only if f is both contra-$\pi g\alpha$-continuous and contra-C_π-continuous.

Proof: Follows from Theorem 5.4.25.

Lemma 5.4.29: [155] Let A and B be subsets of a space X. If B is an α^*-set, then

$\alpha\text{int}(A \cap B) = \alpha\text{int}(A) \cap \text{int}(B)$.

Theorem 5.4.30: A subset S of X is

a) $\pi g\alpha$-open if and only if it is both πgp-open and a K_π-set.

b) $\pi g\alpha$-open if and only if it is both πgp-open and a K_π^*-set.

Proof: a) Necessity: Let S be $\pi g\alpha$-open. For any subset A of X,

$\text{int}(A) \subset \alpha\text{int}(A) \subset \pi\text{int}(A)$.

Let F be a π-closed set such that $F \subset S$. Since S is $\pi g\alpha$-open, $F \subset S$ implies $F \subset \alpha\text{int}(S) \subset \pi\text{int}(S)$ which implies S is πgp-open. Since $S = S \cap X$ where S is $\pi g\alpha$-open and X is a t-set, S is a K_π-set.

Sufficiency: Let S be both πgp-open and a K_π-set. Since S is a K_π-set, $S = A \cap B$ where A is $\pi g\alpha$-open and B is a t-set. Let F be a π-closed set such that $F \subset S$. Since S is πgp-open, $F \subset S$ implies $F \subset \pi\text{int}(S) = S \cap \text{int}(\text{cl}(S)) \subset \text{int}(B)$. Then A is $\pi g\alpha$-open and $F \subset S \subset A$ implies $F \subset \alpha\text{int}(A)$. Therefore $F \subset \alpha\text{int}(A) \cap \text{int}(B) \subset \alpha\text{int}(A \cap B) \subset \alpha\text{int}(S)$.

b) Proof: Similar as that of (a).

Theorem 5.4.31: A map $f : X \to Y$ is

a) $\pi g\alpha$-continuous if and only if it is both πgp-continuous and K_π-continuous.
b) \(\pi g\alpha\)-continuous if and only if it is both \(\pi gp\)-continuous and \(K_{s-}\)-continuous

Proof: Follows from Theorem 5.4.30.

Theorem 5.4.32: A map \(f: X \to Y\) is

a) \(\pi g\alpha\)-open if and only if it is both \(\pi gp\)-open and \(K_{s-}\)-open

b) \(\pi g\alpha\)-open if and only if it is both \(\pi gp\)-open and \(K_{s-}\)-open

Proof: Follows from Theorem 5.4.30.

Theorem 5.4.33: A map \(f: X \to Y\) is

a) contra-\(\pi g\alpha\)-continuous if and only if it is both contra-\(\pi gp\)-continuous and contra-\(K_{s-}\)-continuous.

b) contra-\(\pi g\alpha\)-continuous if and only if it is both contra-\(\pi gp\)-continuous and contra-\(K_{s-}\)-continuous.

Proof: Follows from Theorem 5.4.30

♥ ♥ ♥