7. REFERENCES

7.1. Breeding for rust resistance in hexaploid wheat

Cox, T.S., Raupp, W.J. and Gill, B.S. 1994. Leaf rust resistance genes *Lr41*, *Lr42* and *Lr43* transferred from *Triticum tauschii* to common wheat. *Crop Sci.* **34**: 339-343

in wheat. XVI. Chromosome location of a gene for resistance to leaf rust in a

genes*. CSIRO, East Melbourne, Victoria 3002, Australia, pp 200.

Monosomic analysis and linkage relationship of gene *Yr15* for resistance to stripe

straw breaker foot rot resistance derived from *Aegilops ventricosa* in wheat.

Ep-D1d and a gene conferring leaf rust resistance (*Lr19*) in wheat. *Crop Sci.* 33:
1201-1203.

Biochemical and cytological characterization of wheat / *Aegelops ventricosa* addition
and transfer lines carrying chromosome 4M. *Theor. Appl. Genet.* 77: 184-188.

wheat and their introgression into commercial Indian bread wheat cultivars.

Nagarajan, S and Joshi, L.M. 1975. A historical accounts of rust epidemics in India and

Nagarajan, S., Nayar, S.K. and Bahadur, P. 1981. The proposed brown rust of wheat
(*Puccinia recondita* f. sp. *tritici*) virulence analysis of Flowerdale. *Research
Bulletin* No. 1. IARI, Regional Station, Shimla, 15 pp.

Indian wheats for *Yr, Lr* and *Sr* genes by matching technique, and the genetic
uniformity observed. *Cereal Rusts Bull.* 15: 53-64.

rust resistance genes in bread wheat cultivars HUW -12 and WH - 322. *Indian

Nayar, S.K., Tandon, J.P., Kumar, J., Prashar, M., Bhardwaj, S.C., Goel, L.B. and
D.W.R., Shimla, 32 pp.*

7.2. Genetic divergence and Character association in hexaploid wheat

7.3. Hybrid weakness in hexaploid and tetraploid wheat

Tomar, S.M.S., Kochumadhavan, M. and Nambisan, P.N.N. 1987. Frequency and
distribution of genes for necrosis and chlorosis in tetraploid species of *Triticum*.
Indian J. Genet. **43**: 71-75

Tomar, S.M.S., Kochumadhavan, M., Nambisan, P.N.N. and Joshi, B.C. 1988. Hybrid
Wheat Genet. Symp.* Cambridge, **1**: 165-68.

Tomar, S.M.S., Kochumadhavan, M. and Nambisan, P.N.N. 1989. Hybrid weakness in

Toxopeus, H. and Hermse, J.G.Th. 1964. Chloroplast degeneration as a consequence of

Chinese Spring X *T. macha* var. subletschchumicum and its bearing on genetic
basis of necrosis and chlorosis. *Jap. J. Genet.* **41**: 413-426.

Tsunewaki, K. 1969a. Necrosis genes in *Triticum macha, Triticum spelta* and *Triticum

Tsunewaki, K. 1969b. Origin and phylogenetic differentiation of common wheat revealed

Tsunewaki, K. 1971. Distribution of necrosis genes in wheat. V. *Triticum macha,

Tsunewaki, K. and Hamada, J. 1968. A new type of hybrid chlorosis found in tetraploid

Tsunewaki, K. and Hori, T. 1967. Distribution of necrosis genes in wheat. IV. Common
wheat form Australia, Tibet and Northern Europe. *Japan J. Genet.* **42**: 245-250.

Inf. Serv.* **12**: 1-3.

Tsunewaki, K. and Nakai, Y. 1967b. Distribution of necrosis genes in wheat. II. Japanese

Tsunewaki, K. and Nakai, Y. 1967c. Distribution of necrosis genes in wheat. III. U.S.

Zeven, A.C. 1971. Fifth supplementary list of wheat varieties classified according to their genotype for hybrid necrosis and geographical distribution of *Ne* genes. *Euphytica* 20: 239-254.

Zeven, A.C. 1973. Sixth supplementary list of wheat varieties classified according to their genotype for hybrid necrosis and geographical distribution of *Ne* genes. *Euphytica* 22: 618-632.

Zeven, A.C. 1980. The spread of bread wheat over the old world since the notification as indicated by its genotype for hybrid necrosis. *J’d Agric. Trad Bot.* 27: 19-53.

7.4. Allelic variation of High Molecular Weight Glutenin subunits in Indian hexaploid wheat

