TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Description</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>i</td>
</tr>
<tr>
<td>Table of Contents</td>
<td>iii</td>
</tr>
<tr>
<td>List of Figures</td>
<td>viii</td>
</tr>
<tr>
<td>List of Tables</td>
<td>xi</td>
</tr>
</tbody>
</table>

CHAPTER 1: INTRODUCTION

1.1 General | 1 |
1.2 Factors Influencing the Saturation Flow Rate | 2 |
1.3 Indian Urban Traffic and Maneuverability | 3 |
1.4 Need for the Proposed Study | 5 |
1.5 Objectives of the Study | 6 |
1.6 Organization of the Thesis | 7 |

CHAPTER 2: REVIEW OF LITERATURE

2.1 General | 9 |
2.2 Webster’s Analysis | 9 |
2.3 Studies on Mixed Traffic Equivalency Factors | 10 |
2.4 Studies on Performance Evaluation of Signalized Intersections | 12 |
2.5 Saturation Flow Studies under Mixed Traffic Situation | 14 |
2.6 Highway Capacity Manual Method of Capacity Analysis of Signalized Intersections | 18 |
 2.6.1 Capacity of Signalized Intersection | 20 |
 2.6.2 Level of Service for Signalized Intersection | 22 |
 2.6.3 Operational Analysis of a Signalized Intersection | 23 |
 2.6.3.1 Input Module | 24 |
 2.6.3.2 Volume Adjustment Module | 26 |
2.6.3.3 Saturation Flow Module

2.6.3.4 Capacity Analysis Module

2.6.3.5 Level of Service Module

2.7 Application of HCM Procedure to Indian Urban Traffic Situation: Issues and Problems

2.8 Application of Neural Networks in the Performance Evaluation of Signalized Urban Intersections

2.9 Scope of the Present Study

2.10 Summary

CHAPTER 3: DATA COLLECTION AND ANALYSIS

3.1 General

3.2 Saturation Flow Rate Study as per HCM

3.3 Conceptual Frame Work of the Present Study

3.4 Saturation Green Time Study

3.5 Study Locations

3.5.1 Barkatpura Intersection

3.5.2 Musheerabad Intersection

3.5.3 Patny Intersection

3.5.4 Sangeet Intersection

3.6 Data Reduction and Analysis

3.6.1 Patny Intersection - SBH Approach

3.6.2 Barkatpura Intersection – Baglingampalli Approach

3.6.3 Barkatpura Intersection – Kachiguda Approach

3.6.4 Musheerabad Intersection – Secunderabad Approach

3.6.5 Musheerabad Intersection – Tank Bund Approach
CHAPTER 4: MODELLING OF SATURATION FLOW RATE USING REGRESSION ANALYSIS

4.1 General
4.2 Concept of Multiple Linear Regression
4.3 Concept of Multiple Non Linear Regression
4.4 Development of Multiple Linear Regression Equations
4.5 Development of Multiple Non Linear Regression Equation
4.6 Validation of Multiple Linear Regression Model (Saturation Flow Rate)
4.7 Validation of Multiple Linear Regression Model (Saturation Flow Ratio)
4.8 Validation of Multiple Non Linear Regression Model (Saturation Flow Rate)
4.9 Summary

CHAPTER 5: MODELLING OF SATURATION FLOW RATE USING ANN APPROACH

5.1 General
5.1.1 The Biological Neural Network
5.1.2 The Artificial Neural Network
5.1.3 The Feed Forward Network
5.1.4 Configuration of the Network
5.1.5 Selecting Threshold Function
5.1.6 Training of the Network
5.1.7 The Perceptron Learning
5.1.8 The Back Propagation (BP) Algorithm

5.19 Drawbacks of Back Propagation
 a. Network Paralysis
 b. Local Minima

5.2 Development of Simple BPN Model for the Prediction of Saturation
 Flow Rate
 5.2.1 Data Selection for the Network Training
 5.2.2 Selection of Network Type
 5.2.3 Selection of Input and Output Layer Nodes
 5.2.4 Selecting Topology for a Network
 5.2.4 (a) Simple BPN Model
 5.2.5 Training of the Network
 5.2.5 (a) Training of A Simple BPN Model
 5.2.6 Checking the Network Performance
 5.2.6 (a) Performance of BPN Model

5.3 Development of Simple BPN Model for the Prediction Of Saturation
 Flow Ratio
 5.3.1 Data Selection for the Network Training
 5.3.2 Selection of Network Type
 5.3.3 Selection of Input And Output Layer Nodes
 5.3.4 Selecting Topology for a Network
 5.3.4 (a) Simple BPN Model
 5.3.5 Training of the Network

5.4 Summary
CHAPTER 6: COMPARATIVE ANALYSIS OF REGRESSION MODELS AND ANN MODEL

6.1 General 157
6.2 Comparative Analysis of Multiple Linear Regression Model and ANN Model 157
6.3 Comparative Analysis of Multiple Non Linear Regression Model and ANN Model 160
6.4 Development of Graphs 162
6.5 Summary 165

CHAPTER 7: SUMMARY AND CONCLUSIONS

7.1 Summary 166
7.2 Conclusions 168
7.3 Limitations of the Study 170
7.4 Further Scope of the Work 170

REFERENCES 172

APPENDIX I 178
APPENDIX II 189