INTRODUCTION
Mosquitoes are the most important single group of insects in terms of Public health significance, they are also capable of transmitting many diseases like Malaria, Yellow Fever, Japanese encephalitis, Dengue and Filariasis. There are over 3000 Mosquito species belonging to 34 Genera in the World, of these only about 300 species transmit human and animal diseases. The genus of *Aedes* is represented by several species in India only *Aedes aegypti* and *Aedes albopictus* is the vector of dengue / dengue haemorrhagic fever. In 1954, a more serious form of dengue was reported in the Phillipines (dengue haemorrhagic fever/dengue shock syndrome DHF/DSS). This form of the disease was often fatal, especially infected children from ages 2 to 13 years. It quickly spread to the other countries of Southeast Asia and the South Pacific, causing over 3,50,000 hospitalizations and nearly 12,000 deaths from 1956 until 1981. It is estimated that there are 50 to 100 million cases of dengue fever and about 5,00,000 cases of dengue haemorrhagic fever. The annual incidence of DF cases is estimated to be between 20-30 million and of DHF between 2,00,000 and 4,00,000 cases with 10,000 deaths. During 1996-1998 an increasing trend in morbidities associated with DF/DHF has been observed in Indonesia, Maldives, Sri Lanka, Thailand and India. In India through DF has been known to be in existence in India for a long time; DHF was first reported is an outbreak which occurred in Calcutta in 1963.

*Bacillus sphaericus* is a naturally occurring bacteria has been isolated, cultured and labeled for mosquito control. Mosquito larvicide like *Bacillus sphaericus* Neide is promising and superior to conventional insecticides (Su and Mulla, 1999). The toxic activity is directly attributed to the para sporal crystal toxins that are produced during population (Davidson...
1984; Baumann, et al., 1985). However, due to rapid development of resistance of mosquitoes to Bacillus sphaericus toxin alternate mosquito rapid development of resistance of mosquitoes to Bacillus sphaericus toxin alternate mosquito control measures are needed. Therefore Integrated vector control, which combines microbial pesticides and botanicals is becoming the preferred approach (Murugan et al., 2002).

*Azadirachta indica* commonly known as neem in India, has been used in various ways in times. Neem have also been found as potential mosquito larvicide (Mittal et al., 1995). Neem oil produced immediate mortality as well as delayed effect by larval growth inhibition.

Neem products are capable of multiple effects in insects such as antifeedant, growth regulation fecundity suppression and sterilization, oviposition, repellence or attraction and changes in biological fitness (Mulla, 1999). In recent years, interest in developing natural insecticides has increased because of drawbacks in the use of synthetic insecticides. Environmental pollution, development of insecticide resistance, insecticide induced resurgence of insect pests, and adverse effects of non-target organisms have been problems. In view of the above fact, an attempt has been made to evaluate the combined effect of neem seed kernel extract and bacterial larvicide, *Bacillus sphaericus* on the larvicidal, growth repellent and toxic effect on the Dengue vector, *Aedes aegypti*. 