ABBREVIATIONS

\mathbb{R}^n An Euclidean space with a convenient norm $\| \cdot \|$

\exists There exists

\forall For all

$x \in A$ x is an element of A

$A \subseteq B$ A is a subset of B

\cap Intersection of a sets

\cup Union of sets

\mathbb{R} Real number

\bar{A} The closure of set A

I, I_0 Closed and bounded interval

J_0, J_1 Closed and bounded interval

$FRDE$ Functional random differential equation

$\| \cdot \|_c$ Supremum norm

$C(I_0, \mathbb{R}^n)$ denote the space of all continuous \mathbb{R}^n-Valued functions on I_0 equipped with supremum norm $\| \cdot \|_c$

(Ω, A) a measurable space

$a. e.$ Almost everywhere

$C(I_0, \mathbb{R})$ The space of all continuous \mathbb{R}-valued function

C Banach space with this supremum norm

$AC(I, \mathbb{R})$ Space of all absolutely continuous real-valued function.

β_X The σ-algebra of all Boral subsets of X.

$BM(J, \mathbb{R})$ Spaces of all bounded and measurable real-valued function.