TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER No.</th>
<th>TITLE</th>
<th>PAGE No.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ABSTRACT</td>
<td>iv</td>
</tr>
<tr>
<td></td>
<td>LIST OF TABLES</td>
<td>xiv</td>
</tr>
<tr>
<td></td>
<td>LIST OF FIGURES</td>
<td>xvi</td>
</tr>
<tr>
<td></td>
<td>LIST OF SYMBOLS AND ABBREVIATIONS</td>
<td>xix</td>
</tr>
<tr>
<td>1</td>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1.1 SIGNIFICANCE OF MAGNETIC RESONANCE IMAGING (MRI)</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1.2 SIGNIFICANCE OF IMAGE CLASSIFICATION</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>1.3 SIGNIFICANCE OF IMAGE SEGMENTATION</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>1.4 SIGNIFICANCE OF ANN AND FUZZY TECHNIQUES</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>1.5 PROBLEM DEFINITION</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>1.6 OBJECTIVES OF THE RESEARCH WORK</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>1.7 PROPOSED METHODOLOGY</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>1.8 ORGANIZATION OF THE THESIS</td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td>LITERATURE SURVEY</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>2.1 INTRODUCTION</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>2.2 LITERATURE SURVEY ON IMAGE PREPROCESSING</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>2.3 LITERATURE SURVEY ON FEATURE EXTRACTION</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>2.4 LITERATURE SURVEY ON BRAIN IMAGE CLASSIFICATION TECHNIQUES</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>2.5 LITERATURE SURVEY ON BRAIN IMAGE SEGMENTATION TECHNIQUES</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>2.5.1 Image segmentation based on Non-AI techniques</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>2.5.2 Image segmentation based on Artificial Neural Networks</td>
<td>20</td>
</tr>
</tbody>
</table>
2.5.3 Image segmentation based on fuzzy techniques 22
2.5.4 Image segmentation based on hybrid techniques 27

3 IMAGE PRE-PROCESSING AND FEATURE EXTRACTION 30
3.1 INTRODUCTION 30
3.2 BRAIN IMAGE DATABASE 30
3.3 IMAGE PRE-PROCESSING 32
 3.3.1 Framework of the proposed technique 32
 3.3.2 Algorithm of the skull tissue removal technique 33
 3.3.3 Experimental results of pre-processing technique 34
3.4 FEATURE EXTRACTION 36
 3.4.1 Feature extraction results 39
3.5 CONCLUSION 42

4 MODIFIED ARTIFICIAL NEURAL NETWORKS FOR IMAGE CLASSIFICATION 43
4.1 INTRODUCTION 43
4.2 PROPOSED METHODOLOGY OF IMAGE CLASSIFICATION SYSTEM 43
4.3 CONVENTIONAL ARTIFICIAL NEURAL NETWORKS 44
 4.3.1 Counter Propagation Neural Network 45
 4.3.1.1 Architecture of CPN 45
 4.3.1.2 Training algorithm of CPN 46
 4.3.2 Self-Organizing Map 47
 4.3.2.1 Architecture of SOM 47
 4.3.2.2 Training algorithm of SOM 48
4.4 MODIFIED ARTIFICIAL NEURAL NETWORKS 49
 4.4.1 Modified CPN 49
 4.4.1.1 Architecture of MCPN 50
4.4.1.2 Training algorithm of MCPN 51
4.4.2 Modified SOM1 52
 4.4.2.1 Architecture of MSOM1 53
 4.4.2.2 Training algorithm of MSOM1 53
4.4.3 Modified SOM2 54
 4.4.3.1 Architecture of MSOM2 54
 4.4.3.2 Training algorithm of MSOM2 55
4.5 EXPERIMENTAL RESULTS AND DISCUSSIONS 57
 4.5.1 Results of SOM 59
 4.5.1.1 Accuracy measures of SOM 59
 4.5.1.2 Computational complexity and convergence rate of SOM 60
 4.5.2 Results of CPN 61
 4.5.2.1 Accuracy measures of CPN 61
 4.5.2.2 Computational complexity and convergence rate of CPN 61
 4.5.3 Results of MCPN 62
 4.5.3.1 Accuracy measures of MCPN 62
 4.5.3.2 Computational complexity and convergence rate of MCPN 63
 4.5.4 Results of Modified SOM1 64
 4.5.4.1 Accuracy measures of MSOM1 64
 4.5.4.2 Computational complexity and convergence rate of MSOM1 64
 4.5.5 Results of Modified SOM2 65
 4.5.5.1 Accuracy measures of MSOM2 65
 4.5.5.2 Computational complexity and convergence rate of MSOM2 66
4.6 CONCLUSION 67
5 MODIFIED ARTIFICIAL NEURAL NETWORKS FOR IMAGE SEGMENTATION

5.1 INTRODUCTION

5.2 PROPOSED METHODOLOGY OF ANN BASED SEGMENTATION

5.3 LVQ NEURAL NETWORK
 5.3.1 Architecture of LVQ
 5.3.2 Training algorithm of LVQ
 5.3.3 Implementation of LVQ

5.4 BACK PROPAGATION NEURAL NETWORK
 5.4.1 Architecture of BPN
 5.4.2 Training algorithm of BPN
 5.4.3 Implementation of BPN

5.5 MODIFIED BPN
 5.5.1 Architecture of MBPN
 5.5.2 Training algorithm of MBPN
 5.5.3 Implementation of MBPN

5.6 EXPERIMENTAL RESULTS AND DISCUSSIONS
 5.6.1 Result analysis of LVQ
 5.6.1.1 Segmentation efficiency results of LVQ
 5.6.1.2 Convergence rate analysis of LVQ
 5.6.2 Result analysis of BPN
 5.6.2.1 Segmentation efficiency results of BPN
 5.6.2.2 Convergence rate analysis of BPN
 5.6.3 Result analysis of MBPN
 5.6.3.1 Segmentation efficiency results of MBPN
 5.6.3.2 Convergence rate analysis of MBPN
 5.6.4 Experimental results of the AI techniques with real-time data set
5.7 CONCLUSION

6 MODIFIED FUZZY TECHNIQUES BASED IMAGE SEGMENTATION

6.1 INTRODUCTION

6.2 PROPOSED METHODOLOGY OF FUZZY BASED SEGMENTATION

6.3 CONVENTIONAL FCM TECHNIQUE

6.4 MODIFIED FCM TECHNIQUES

6.4.1 Modified FCM1 technique

6.4.1.1 Algorithm of Modified FCM1

6.4.2 Modified FCM2 technique

6.4.2.1 Algorithm of Modified FCM2

6.5 EXPERIMENTAL RESULTS AND DISCUSSIONS

6.5.1 Results of conventional FCM

6.5.2 Results of Modified FCM1

6.5.2.1 Effect of threshold values on the performance measures

6.5.3 Results of Modified FCM2

6.6 CONCLUSION

7 CONCLUSION

7.1 SUMMARY OF WORK DONE

7.1.1 Analysis of ANN based image classification techniques

7.1.2 Analysis of ANN based image segmentation techniques

7.1.3 Analysis of fuzzy based image segmentation techniques

7.2 CONTRIBUTION OF THE WORK

7.3 SCOPE FOR FURTHER WORK

REFERENCES
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIST OF PUBLICATIONS</td>
<td>136</td>
</tr>
<tr>
<td>CURRICULUM VITAE</td>
<td>138</td>
</tr>
</tbody>
</table>