LIST OF FIGURES

<table>
<thead>
<tr>
<th>Fig.1.1: Application of metal oxides in various fields</th>
<th>06</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fig.1.2: Photocatalytic reaction mechanism</td>
<td>08</td>
</tr>
<tr>
<td>Fig.1.3: Sol-gel processes and their products.</td>
<td>11</td>
</tr>
<tr>
<td>Fig.1.4: Schematic representation of (a) a micelle, and (b) an inverse micelle</td>
<td>12</td>
</tr>
<tr>
<td>Fig.1.5: Possible mechanism of ultra sonication method</td>
<td>18</td>
</tr>
<tr>
<td>Fig.1.6: X-ray reflections from a crystal</td>
<td>23</td>
</tr>
<tr>
<td>Fig.1.7: Typical TEM diagram</td>
<td>25</td>
</tr>
<tr>
<td>Fig.1.8: GC-MS schematic</td>
<td>28</td>
</tr>
<tr>
<td>Fig.1.9: LC-MS schematic</td>
<td>30</td>
</tr>
<tr>
<td>Fig.2.1A: FT-IR spectra of a) CaGeO$_3$ and b) MgGeO$_3$</td>
<td>39</td>
</tr>
<tr>
<td>Fig.2.2A: UV-DRS spectra of a) CaGeO$_3$ and b) MgGeO$_3$</td>
<td>40</td>
</tr>
<tr>
<td>Fig.2.3A: XRD pattern of a) CaGeO$_3$, and b) MgGeO$_3$</td>
<td>42</td>
</tr>
<tr>
<td>Fig.2.4A: SEM images of a) CaGeO$_3$, and b) MgGeO$_3$</td>
<td>43</td>
</tr>
<tr>
<td>Fig.2.5A: TEM and SAED images of a) CaGeO$_3$, and b) MgGeO$_3$</td>
<td>44</td>
</tr>
<tr>
<td>Fig.2.6A: N$_2$ adsorption-desorption isotherms of synthesized a) CaGeO$_3$, and b) MgGeO$_3$</td>
<td>46</td>
</tr>
<tr>
<td>Fig.2.7A: TG-DTA of a) CaGeO$_3$, and b) MgGeO$_3$</td>
<td>47</td>
</tr>
<tr>
<td>Fig.2.8A: a) I-V Characteristic of AGeO$_3$, and b) electrical conductivity of AGeO$_3$</td>
<td>50</td>
</tr>
<tr>
<td>Fig.2.1B: FT-IR spectra of a) ZnSeO$_3$, b) PbSeO$_3$, c) MgSeO$_3$, and d) CuSeO$_3$</td>
<td>54</td>
</tr>
<tr>
<td>Fig.2.2B: UV-DRS spectra of a) ZnSeO$_3$, b) PbSeO$_3$, c) MgSeO$_3$, and d) CuSeO$_3$</td>
<td>57</td>
</tr>
<tr>
<td>Fig.2.3B: XRD pattern of a) ZnSeO$_3$, b) PbSeO$_3$, c) MgSeO$_3$, and d) CuSeO$_3$</td>
<td>60</td>
</tr>
<tr>
<td>Fig.2.4B: SEM images of a) ZnSeO$_3$, b) PbSeO$_3$, c) MgSeO$_3$, and d) CuSeO$_3$</td>
<td>63</td>
</tr>
<tr>
<td>Fig.2.5B: TEM and SAED images of a) ZnSeO$_3$, b) PbSeO$_3$, c) MgSeO$_3$, and d) CuSeO$_3$</td>
<td>64</td>
</tr>
<tr>
<td>Fig.2.6B: N$_2$ adsorption-desorption isotherms of synthesized a) ZnSeO$_3$, b) MgSeO$_3$, and c) CuSeO$_3$</td>
<td>66</td>
</tr>
<tr>
<td>Fig.2.7B: a) I-V Characteristic of BSeO$_3$, and b) electrical conductivity of BSeO$_3$</td>
<td>69</td>
</tr>
<tr>
<td>Fig.2.1C: FT-IR spectra of a) CaTiO$_3$, b) PbTiO$_3$, and c) ZnTiO$_3$</td>
<td>73</td>
</tr>
</tbody>
</table>
Fig. 2.2C: UV-DRS pattern of a) CaTiO$_3$, b) PbTiO$_3$, and c) ZnTiO$_3$ 75

Fig. 2.3C: XRD pattern of a) CaTiO$_3$, b) PbTiO$_3$, and c) ZnTiO$_3$ 76

Fig. 2.4C: SEM images of a) CaTiO$_3$, b) PbTiO$_3$, and c) ZnTiO$_3$ 79

Fig. 2.5C: TG-DTA of a) CaTiO$_3$, b) PbTiO$_3$, and c) ZnTiO$_3$ 81

Fig. 2.6C: a) I-V Characteristic of CTiO$_3$, and b) electrical conductivity of CTiO$_3$ 84

Fig. 3.1: Chemical structure of Mauve 85

Fig. 3.2: Principle of cotton dyeing with triazyl reactive dye 88

Fig. 3.3: Photocatalytic degradation of MB dye in presence of a) MgGeO$_3$, b) CaGeO$_3$, c) without catalyst, and d) in dark as a function of time. 98

Fig. 3.4: Percent degradation with concentration of MB dye using a) MgGeO$_3$, and b) CaGeO$_3$. 98

Fig. 3.5: Effect of amount of photocatalyst on photodegradation of MB dye using a) CaGeO$_3$, and b) MgGeO$_3$. 100

Fig. 3.6: Change in absorbance with time, representing the photodegradation of MB using MgGeO$_3$. 100

Fig. 3.7: Photocatalytic degradation of MB dye using a) ZnSeO$_3$, b) MgSeO$_3$, c) PbSeO$_3$, d) CuSeO$_3$, e) without catalyst, f) in dark and a’) photodegradation of IC dye using ZnSeO$_3$. 103

Fig. 3.8: Photodegradation of MB and IC dye at various concentrations using ZnSeO$_3$ photocatalyst. 103

Fig. 3.9: Effect of amount of ZnSeO$_3$ photocatalyst on photodegradation using MB and IC. 105

Fig. 3.10: Change in absorbance with time, representing the photodegradation of IC using ZnSeO$_3$. 105

Fig. 3.11: Graphical representation of photodegradation of MB dye using a) ZnTiO$_3$, b) PbTiO$_3$, c) CaTiO$_3$, d) without catalyst, and e) in dark. 108

Fig. 3.12: Effect of MB dye concentration on photodegradation using a) ZnTiO$_3$. vi
b) PbTiO$_3$, and c) CaTiO$_3$

Fig. 3.13: Effect of amount of photocatalyst on photodegradation using a) ZnTiO$_3$, b) PbTiO$_3$, and c) CaTiO$_3$

Fig. 3.14: Change in absorbance with time, representing the photodegradation of MB using ZnTiO$_3$

Fig. 3.15: Methylene blue degradation under sunlight in presence of ZnTiO$_3$
 a) before irradiation, b) after irradiation, and c) colour removal during photocatalysis.

Fig. 3.16: Photodegradation pathway of methylene blue in presence of ZnTiO$_3$

Fig. 3.17: Mass spectrum at wavelength 284 nm
 I) first stage before irradiation,
 II) second stage after irradiation, and
 III) third stage at final stage

Fig. 3.18: Mass spectrum at wavelength 270 nm
 I) first stage before irradiation,
 II) second stage after irradiation, and
 III) third is final stage

Fig. 3.19: Mass spectrum at wavelength 256 nm
 I) first stage before irradiation,
 II) second stage after irradiation, and
 III) third is final stage

Fig. 3.20: Mass spectrum at wavelength 242 nm
 I) first stage before irradiation,
 II) second stage after irradiation, and
 III) third is final stage

Fig. 4.1: (i), (ii) and (iii) Microscopic observations of *E. coli*, *E. aerogenes* and *S. aureus* respectively

Fig. 4.2: (i) Spreading method using sterile swab, (ii) Application of standard antimicrobial discs.

Fig. 4.3: (i), (ii), (iii) and (iv) Activity of standard antimicrobial discs in first plate (clockwise direction) against *E. coli*, *E. aerogenes*, *P. aeruginosa* and *S. aureus* respectively and activity of Synthesized mixed metal oxides in second plate (clockwise direction) on *P. auroginosa*, *E. coli*, *E. aerogenes* and *S. aureus* respectively

Fig. 4.4: Activity of AGeO$_3$, BSeO$_3$ and CTiO$_3$ on ATCC strains on microorganisms

Fig. 4.5: Effects of laboratory synthesized mixed metal oxide on microbial biodiversity
Fig. 4.6: Effect on plumule and radical length of *wheat seeds* in presence of
i) Sterile distilled water, ii) Methylene blue and iii) photo degraded Methylene blue decolorized using mixed metal oxide of ABO$_3$

Fig 4.7: Effects of mechanochemical synthesized mixed metal oxides on plant system (*Allium cepa* root tips).

Fig.4.8: Effects of mixed metal oxide on plant systems (*Allium cepa* roots)
(i) : Onion bulls were exposed to test samples, (ii) and (iii) : Onion bulbs exposed to mixed metal oxide samples, (iv), (v) and (vi) : Cells were observed under microscope

Fig.4.9: Effect of laboratory Synthesized mixed metal oxides on plant system (*Hibiscus* pollen tube germination).

Fig.4.10: (i): Petri plate containing pollen grains in nutrient medium with controls and test sample,(ii) : Negative control i.e. pollen grains without nutrient medium didn’t shows pollen tube germination,
(iii) : Positive control i.e. pollen grains without test samples shows pollen tube germination, (iv) and (v) : Pollen grains with test samples shows pollen tube germination.

Fig.4.11: (i) : Negative control, (ii) : Pollen tube germination after 1 hour incubation,(iii,) (iv) and (v) Pollen grains with test samples shows pollen tube germination.

Fig.5.1: Various classes of heterogeneous catalysts employed industrially

Fig.5.2: Structures showing of different types of zeolites

Fig.5.3: a) Chromatogram and b) Mass spectrum of benzene

Fig.5.4: a) Chromatogram and b) Mass spectrum of Toluene

Fig.5.5: a) Chromatogram and b) Mass spectrum of benzyl chloride

Fig.5.6: a) Chromatogram and b) Mass spectrum of diphenylmethane

Fig.5.7: a) Chromatogram and b) Mass spectrum of o-diphenylmethane and c) Mass spectrum of p-diphenylmethane