List of Tables

1.1 Available ab initio on solids or molecular aurides. The table is taken from the reference of Pyykkö[42] .. 7

2.1 DFT-based reactivity descriptors: Global and Local 57

3.1 (a) Average Interatomic Distances and Bond Angles between Different Sites in Au$_{19}$ and Au$_{20}$.. 87

3.2 (a) Charges on Various Sites in Au$_{19}$ and Au$_{20}$ as Obtained from Lowdin Population Analysis .. 88

3.3 (a) Reactivity of the Various Sites of Au$_{19}$ and Au$_{20}$ 88

4.1 Structural, Electronic and Reactivity Parameters of Au$_{6}$ Conformations. The values in red, blue and black correspond to electrophilic, nucleophilic and amphiphilic attack sites respectively. The values given next to the conformations in Column II of the Table correspond to the inter-atomic distances (in Å) between various unique sites. .. 108

4.2 Structural, Electronic and Reactivity Parameters of Au$_{7}$ Conformations. The values in red, blue and black correspond to electrophilic, nucleophilic and amphiphilic attack sites respectively. The values given next to the conformations in Column II of the Table correspond to the inter-atomic distances (in Å) between various unique sites. .. 112

4.3 Structural, Electronic and Reactivity Parameters of Au$_{8}$ Conformations. The values in red, blue and black correspond to electrophilic, nucleophilic and amphiphilic attack sites respectively. The values given next to the conformations in Column II of the Table correspond to the inter-atomic distances (in Å) between various unique sites. .. 115

4.4 Structural, Electronic and Reactivity Parameters of Au$_{9}$ Conformations. The values in red, blue and black are electrophilic, nucleophilic and amphiphilic attack sites respectively. The values given next to the conformations in Column II of the Table correspond to the inter-atomic distances (in Å) between various unique sites. .. 118
List of Tables

4.5 Structural, Electronic and Reactivity Parameters of Au_{10} Conformations. The values in red, blue and black are electrophilic, nucleophilic and amphiphilic attack sites respectively. The values given next to the conformations in Column II of the Table correspond to the inter-atomic distances (in Å) between various unique sites. ... 120

4.6 Structural, Electronic and Reactivity Parameters for Au_{11} Conformations. The values in red, blue and black are electrophilic, nucleophilic and amphiphilic attack sites respectively. The values given next to the conformations in Column II of the Table correspond to the inter-atomic distances (in Å) between various unique sites. ... 122

4.7 Structural, Electronic and Reactivity Parameters of Au_{12} Conformations. The values in red, blue and black are electrophilic, nucleophilic and amphiphilic attack loving sites respectively. The values given next to the conformations in Column II of the Table correspond to the inter-atomic distances (in Å) between various unique sites. ... 124

4.8 Structural, Electronic and Reactivity Parameters of Au_{13} Conformations. The values in red, blue and black are electrophilic, nucleophilic and amphiphilic attack loving sites respectively. The values given next to the conformations in Column II of the Table correspond to the inter-atomic distances (in Å) between various unique sites. ... 126

4.9 HOMO and LUMO energies, the corresponding energy gaps and hardness in Au clusters ... 128

5.1 Relative energies computed for various Au_{6} conformations using various exchange-correlation potentials are listed. The comparison of energy is done with respect to lowest total energy of cluster for a given functional. ... 144

5.2 Relative energies computed for various Au_{7} conformations using various exchange-correlation potentials are listed. The comparison of energy is done with respect to lowest total energy of cluster for a given functional ... 145

5.3 Relative energies computed for various Au_{8} conformations using various exchange-correlation potentials are listed. The comparison of energy is done with respect to lowest total energy of cluster for a given functional ... 146

5.4 Relative energies computed for various Au_{9} conformations using various exchange-correlation potentials are listed. The comparison of energy is done with respect to lowest total energy of cluster for a given functional ... 147

5.5 Relative energies computed for various Au_{10} conformations using various exchange-correlation potentials are listed. The comparison of energy is done with respect to lowest total energy of cluster for a given functional ... 148
5.6 Relative energies computed for various Au$_{11}$ conformations using various exchange-correlation potentials are listed. The comparison of energy is done with respect to lowest total energy of cluster for a given functional 149

5.7 Relative energies computed for various Au$_{12}$ conformations using various exchange-correlation potentials are listed. The comparison of energy is done with respect to lowest total energy of cluster for a given functional 150

5.8 Relative energies computed for various Au$_{13}$ conformations using various exchange-correlation potentials are listed. The comparison of energy is done with respect to lowest total energy of cluster for a given functional 151

5.9 Fukui Functions computed for the ground state geometry of Au$_7$ with various functionals 155

6.1 Charge on individual atoms based on Lowdin population analysis for various conformations observed in Au$_6$ between 1100 and 1600 K and in Au$_8$ between 200 and 800 K. 189

B.1 Computational requirements of simulations in this thesis. In the table the time needed for one wavefunction step is given in seconds. It depends on the size of the studied system, the type of calculation and the type of computer and the number of processors used. 214