LIST OF TABLES

<table>
<thead>
<tr>
<th>Figure no.</th>
<th>Description</th>
<th>Page no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>The basic flavonoid molecules. Modification of C and B ring results into formation of array of flavonoids.</td>
<td>1</td>
</tr>
<tr>
<td>2.2</td>
<td>Schematic overview of the flavonoid biosynthesis pathway in plants. Abbreviations: CHS, Chalcone synthase; CHI, chalcone isomerase; F3H, flavanone 3-hydroxylase; FNS, flavones synthase; FLS, flavonol synthase; DFR, dihydroflavonol 4-reductase; LAR, leucoanthocyanidin reductase; ANR, anthocyanidin reductase; ANS, anthocyanidin synthase.</td>
<td>11</td>
</tr>
<tr>
<td>3.1</td>
<td>The recognition site of BgII and SpeI restriction enzymes.</td>
<td>49</td>
</tr>
<tr>
<td>3.2</td>
<td>The recognition site of Ascl, SwaI, SpeI and BamHI restriction enzymes.</td>
<td>52</td>
</tr>
<tr>
<td>4.1</td>
<td>Expression level of genes encoding enzymes (a) phenylalanine ammonia lyase (NtPAL), (b) chalcone isomerase (NtCHI), (c) chalcone synthase (NtCHS), (d) flavanone 3- hydroxylase (NtF3H), (e) dihydroflavanol reductase (NtDFR), (f) flavonol synthase (NtFLS), and (g) anthocyanidin synthase (NtANS) in tobacco conducted through RT-PCR. An amplification of 435 bp, 432 bp, 466 bp, 467 bp, 375 bp, 409 bp and 453 bp was observed for NtPAL, NtCHI, NtCHS, NtF3H, NtDFR, NtFLS and NtANS respectively. M, marker; 1-6, one set of primers; 1'-6', second set of primers.</td>
<td>85</td>
</tr>
<tr>
<td>4.2</td>
<td>Colony PCR of genes encoding enzymes (a) phenylalanine ammonia lyase (NtPAL), (b) chalcone isomerase (NtCHI), (c) chalcone synthase (NtCHS), (d) flavanone 3- hydroxylase (NtF3H), (e) dihydroflavanol reductase (NtDFR), (f) flavonol synthase (NtFLS) and anthocyanidin synthase (ANS) cloned in pGEM®-T Easy vector. An amplification of 435 bp, 432 bp, 466 bp, 467 bp, 375 bp, 409 bp and 453 bp was observed for NtPAL, NtCHI, NtCHS, NtF3H, NtDFR, NtFLS and NtANS respectively.</td>
<td>86</td>
</tr>
<tr>
<td>4.3</td>
<td>Transcript expression level of genes encoding enzymes NtPAL, NtCHI, NtCHS, NtF3H, NtDFR, NtFLS and NtANS of flavonoid biosynthetic pathway in tobacco analyzed through RT-PCR.</td>
<td>86</td>
</tr>
<tr>
<td>4.4</td>
<td>Colony PCR of DH5α bacterial colonies containing pGEM®-T-CsF3H (a) and double digestion of isolated pGEM®-T-CsF3H with BgII and SpeI (b) produced CsF3H cDNA of 1.12 kb.</td>
<td>87</td>
</tr>
<tr>
<td>4.5</td>
<td>Schematic representation of the T-DNA region of pCAMBIA 1302 containing CsF3H (1.12 kb) between restriction sites BglII and SpeI.</td>
<td>88</td>
</tr>
<tr>
<td>4.6</td>
<td>Colony PCR of DH5α bacterial colonies containing pCAMBIA 1302-CsF3H (a) and double digestion of isolated pCAMBIA 1302-CsF3H with BgII and SpeI (b) produced CsF3H cDNA of 1.12 kb.</td>
<td>88</td>
</tr>
<tr>
<td>4.7</td>
<td>Cloning of NtFLS for RNAi construct preparation. PCR amplifications of tobacco flavonol synthase (NtFLS) cDNA fragment (233bp) using primers containing Ascl at 5′ end of forward primer and SwaI at 5′ end of reverse primer to clone it in sense orientation, while using primers containing SpeI at 5′ end of forward primer and BamHI at 5′ end of reverse primer to clone it in antisense orientation (a). Colony PCR result confirmed the cloning of above isolated NtFLS cDNA fragments into pGEM®-T Easy vector (b).</td>
<td>89</td>
</tr>
</tbody>
</table>
4.8 RNAi construct (pFGC1008-NtFLS) preparation. Cloning of NtFLS cDNA fragment in antisense orientation into RNAi vector (pFGC1008). SpeI and BamHI digested NtFLS cDNA fragment from recombinant pGEM®-T Easy vector (a). SpeI and BamHI digested pFGC1008 vector (b). Ligation of SpeI and BamHI digested NtFLS cDNA fragment was done in antisense orientation in SpeI and BamHI digested pFGC1008 vector. The confirmation of ligation through colony PCR using vector specific primers is shown in lane 1 to 10, while C is a control pFGC1008 vector without NtFLS fragment at antisense orientation.

4.9 Cloning of NtFLS cDNA fragment in sense orientation into pFGC1008 containing NtFLS-AS. Ascl and SwaI digested NtFLS cDNA fragment from recombinant pGEM-T Easy and Ascl and SwaI digested pFGC1008 containing NtFLS-AS (a). Ligation of digested NtFLS cDNA fragment was done in sense orientation at Ascl and SwaI restriction sites into digested pFGC1008. The confirmation of ligation through colony PCR using vector specific primers in lane 1-6 (b).

4.10 Schematic representation of RNAi construct (pFGC1008-NtFLS). T-DNA region containing the inverted repeats of tobacco flavonol synthase (FLS) cDNA fragments under the control of CaMV 35S promoter (p35S) while octopine synthase (OCS) as terminator, a GUS-Intron in between sense and antisense NtFLS cDNA fragments (NtFLS-S and NtFLS-AS), the T-DNA left border (LB) and right border (RB), a plant hygromycin (Hyg) resistance gene as plant selection marker (a). PCR confirmation of prepared pFGC1008-NtFLS construct (b). PCR resulted in 458 bp (Lane 2), 798 bp (Lane 4), 1,361 bp (Lane 5) amplified products of cloned NtFLS-S, NtFLS-AS fragment and NtFLS (S) + GUS + NtFLS (AS) in pFGC1008 vector respectively. Whereas, lane 1 and lane 2 shows 225 bp and 565 bp bands as controls respectively (b). Double digestion of prepared RNAi construct with Ascl and SpeI resulted in insert of 838 bp (c).

4.11 Colony PCR confirmation of pCAMBIA 1302-CsF3H (a) and pFGC1008-NtFLS (b) in Agrobacterium (LBA4404) strain.

4.12 Agrobacterium mediated tobacco transformation. Empty pCAMBIA 1302 (a), pCAMBIA 1302-CsF3H (b), empty pFGC1008 (c) and pFGC1008-NtFLS (d) transformed leaf discs of tobacco placed on selection media for regeneration. Empty pCAMBIA 1302 (e), pCAMBIA 1302-CsF3H (f), empty pFGC1008 (g) and pFGC1008-NtFLS (h) transformed tobacco leaf discs on selection media under callusing phase and empty pCAMBIA 1302 (i), pCAMBIA 1302-CsF3H (j), empty pFGC1008 (k) and pFGC1008-NtFLS (l) putative transgenic tobacco plants on selection media.

4.13 Genomic DNA PCR confirmation of inserted CsF3H in overexpressing transgenic lines (a) and NtFLS RNAi cassette in silenced tobacco transgenic lines (b). F10, F9, F12b and F17 are CsF3H overexpressing transgenic lines; G12, A2, B1 and E13 are NtFLS silenced transgenic lines; C, control tobacco plants.

4.14 Semiquantitative PCR analysis for expression study. Steady-state mRNA level of CsF3H cDNA measured in leaves of CsF3H overexpressing transgenic lines (F10, F9 and F12b) and control tobacco. Housekeeping gene 26S rRNA was used as internal control for expression analysis.

4.15 Semiquantitative PCR analysis for expression study. Steady-state mRNA level of tobacco NtFLS was measured in leaf tissue of NtFLS silenced transgenic lines (G12, A2, B1, E13) and control tobacco. Housekeeping gene 26S rRNA was used as internal control. Below gel picture, bar diagram shows relative transcript levels of the respective amplified bands. Black and grey bars show 26S rRNA and NtFLS transcript levels, respectively.

4.16 Transcript level of genes encoding flavonoid biosynthetic pathway enzymes NtPAL, phenylalanine ammonia lyase; NtCHS, chalcone synthase; NtCHI,
chalcone isomerase; NtF3H, flavanone 3-hydroxylase; NtFLS, flavonol synthase; NtDFR, dihydroflavonol reductase; NtANS, anthocyanidin synthase in control and CsF3H overexpressing transgenic tobacco line F10 (a) and in control and NtFLS silenced transgenic line G12 (b). Below gel picture, bar diagram shows relative transcript levels of the respective amplified bands. Black bars indicate 26S rRNA expression, dark grey bars indicate expression in control and light grey bars indicate expression in CsF3H transgenic line F10 and NtFLS silenced transgenic line G12.

4.17 Total flavonols content in leaf extract of control and CsF3H overexpressing tobacco transgenic lines F10, F9 and F12b (a) and in leaf extract of control and NtFLS silenced tobacco transgenic lines G12, A2, B1 and E13 (b). Quercetin content in leaf extract of control and NtFLS silenced tobacco transgenic lines G12, A2, B1 and E13 (c). Significant differences from the control are denoted by one or two asterisk corresponding to P < 0.05 and P < 0.01, respectively, by Student’s t-test.

4.18 (+)-Cat (a), (-)-EC (b) and (-)-EGC (c) content in CsF3H overexpressing transgenic lines F10, F9 and F12b compared to control tobacco plant. HPLC chromatogram of 0.2 mg ml⁻¹ of (+)-Cat (d) and (-)-EC (e) standards showed sharp peak at retention time of 10.07 and 13.93 min respectively at 280 nm. The standard (-)-EGC showed peak at retention time of 6.03 min (Sharma et al. 2005). Chromatogram showing (+)-Cat, (-)-EC and (-)-EGC content in control (f). Cat was found to be undetectable in the control with a very less amount of EC and EGC. Chromatograms showing peaks of Cat, EC and EGC at similar retention times to that of standards in CsF3H overexpressing transgenic lines F10 (g), F9 (h) and F12b (i). Red arrows indicate the peak for Cat (catechin), black arrows indicate peak for EC (epicatechin) and green arrows indicate peak for EGC (epigallocatechin). Significant differences from the control are denoted by one or two asterisk corresponding to P < 0.05 and P < 0.01, respectively, by Student’s t-test.

4.19 (+)-Cat (a), (-)-EC (b) and (-)-EGC (c) content in NtFLS silenced transgenic lines G12, A2, B1 and E13 compared to control tobacco plant. Chromatograms showing peaks of (+)-Cat, (-)-EC and (-)-EGC at similar retention times to that of standards in NtFLS silenced transgenic lines G12 (d), A2 (e), B1 (f) and E13 (g). Red arrows indicate the peak for Cat (catechin), black arrows indicate peak for EC (epicatechin) and green arrows indicate peak for EGC (epigallocatechin). Significant differences from the control are denoted by one or two asterisk corresponding to P < 0.05 and P < 0.01, respectively, by Student’s t-test.

4.20 Anthocyanin content in methanolic extracts of flowers of control and CsF3H overexpressing transgenic lines F10, F9 and F12b (a). Anthocyanin content in methanolic extracts of flowers of control and NtFLS silenced transgenic lines G12, A2, B1 and E13 (b). A_{530}, absorption at 530 nm; A_{657}, absorption at 657 nm. Significant differences from the control are denoted by one or two asterisk corresponding to P < 0.05 and P < 0.01, respectively, by Student’s t-test.

4.21 Transcript level of genes encoding antioxidant pathway enzymes GR, glutathione reductase; AP, ascorbate peroxidase; CAT, catalase and GST, glutathione S-transferase in control and CsF3H overexpressing transgenic tobacco line F10 (a). Transcript level of genes encoding antioxidant pathway enzymes GR, AP, CAT and GST in control and NtFLS silenced transgenic line G12 (b). Below gel picture, bar diagram shows relative transcript levels of the respective amplified bands. Black bars indicate 26S rRNA expression, dark grey bars indicate the expression in control plant and light grey bars indicate expression in CsF3H overexpressing and NtFLS silenced transgenic line.

4.22 Activities of antioxidant enzymes GR, glutathione reductase; AP, ascorbate peroxidase; CAT, catalase and GST, glutathione S-transferase in leaves of
control and CsF3H overexpressing transgenic tobacco lines F10, F9 and F12b (a).
Activities of antioxidant enzymes GR, APx, CAT and GST in leaves of control and NtFLS silenced transgenic tobacco lines G12, A2, B1 and E13 (b).
Enzyme activity of GST, APx, and GR is expressed in μmoles m⁻¹g⁻¹FW and CAT is expressed in nmols m⁻¹g⁻¹FW. All results are presented as mean ± SD (n=3).
Significant differences from the control are denoted by one or two asterisk corresponding to P < 0.05 and P < 0.01, respectively, by Student’s t-test.

4.23 Cellular content of catechin in in vitro catechin treated and untreated wild tobacco seedlings and its effect on the transcript level of genes encoding antioxidant and flavonoid pathway enzymes and also on their antioxidant enzyme activities. Bar diagram shows the cellular content of Cat in wild tobacco seedlings exposed to 10 and 50 µM concentrations of catechin as determined through HPLC analysis (a) Significant difference from the untreated control is denoted by one or two asterisk corresponding to P < 0.05 and P < 0.01, respectively, by Student’s t-test. HPLC chromatogram showing undetectable level of catechin in wild tobacco seedlings (b). HPLC chromatograms showing peaks at retention time of 10.4 and 10.7 m depicting cellular concentration of catechin in 10 µM (c) and 50 µM (d) exposed tobacco seedlings respectively. Transcript level of NtPAL, phenylalanine ammonia lyase; NtCHS, chalcone synthase; NtF3H, flavanone 3-hydroxylase in catechin treated (10 and 50 µM) and untreated wild tobacco seedlings (e). Transcript level of genes encoding antioxidant pathway enzymes GR, glutathione reductase; APx, ascorbate peroxidase; CAT, catalase and GST, glutathione S-transferase in catechin treated (10 and 50 µM) and untreated wild tobacco seedlings (f). Below gel picture, bar diagram shows relative transcript levels of the respective amplified bands. Black bars indicate 26S rRNA expression, dark grey indicate untreated control, light grey bars indicate expression in wild tobacco seedlings exposed to 10 µM catechin and very light grey bars indicate expression in seedlings exposed to 50 µM catechin. Effect of exogenous application of catechin on activities of tobacco antioxidant enzymes GR, APx, CAT and GST (g). Black bars indicate activities in untreated wild tobacco seedlings, dark grey indicates activities in wild tobacco seedlings exposed to 10 µM catechin and light grey bars indicate activities in seedlings exposed to 50 µM catechin. Enzyme activity of APx, GST and GR is expressed in μmoles m⁻¹g⁻¹FW and CAT is expressed in nmols m⁻¹g⁻¹FW.

4.24 Formation of dihyrokaempferol (DHK) from naringenin by purified recombinant CsF3H protein as analyzed by TLC (R and S represent reaction mixture and substrate, respectively) (a) and F3H enzyme activity assayed by high performance liquid chromatography (b): (i) pure naringenin at 290 nm and (ii) ethyl acetate extract of the enzymatic reaction mixture showing peaks for naringenin and DHK.

4.25 Transcript profiling of gene encoding CsF3H studied in 3rd leaf of Camellia sinensis shoot after 24 hrs, 48 hrs and 72 hrs of 0 mM, 50 mM and 150 mM NaCl stress exposure.

4.26 Comparison of root system of control and CsF3H overexpressing transgenic tobacco seedlings under unstressed and salt stressed conditions. Photographs depicting root system morphology of 10 days old seedlings of control and CsF3H transgenic line F10 grown on normal MS media with 0 mM NaCl (a) and on MS media supplemented with 50 mM NaCl (b), with 150 mM NaCl (c) and with 200 mM NaCl (d) for next 15 days. Below photographs of seedlings on MS plates, bar diagram shows primary root length (e) and number of lateral roots (f) in seedlings of control and CsF3H overexpressing transgenic lines F10, F9 and F12b under 0 mM NaCl, 50 mM NaCl, 150 mM NaCl and 200 mM NaCl stress. Significant differences from the control are denoted by one or two asterisk corresponding to P < 0.05 and P < 0.01, respectively, by Student’s t-test.
4.27 Salt stress response of control and CsF3H overexpressing transgenic potted tobacco plants. Representative photograph shows the phenotype of 45 days old control and transgenic tobacco line F10 at 0 days of 0 mM NaCl stress (a), after 25 days of 0 mM NaCl stress (b) and after 40 days of 0 mM NaCl stress (c). Photograph shows the phenotype of 45 days old control and transgenic tobacco line F10 at 0 days of 50 mM NaCl stress (d), after 25 days of 50 mM NaCl stress (e) and after 40 days of 50 mM NaCl stress (f). Photograph shows the phenotype of 45 days old control and transgenic tobacco line F10 at 0 days of 150 mM NaCl stress (g), after 25 days of 150 mM NaCl stress (h) and after 40 days of 150 mM NaCl stress (i).

4.28 Electrolyte leakage in leaves of control and CsF3H overexpressing transgenic lines F10, F9 and F12b under 0 mM NaCl, 50 mM NaCl and 150 mM NaCl stress. Significant differences from the control are denoted by one or two asterisk corresponding to $P < 0.05$ and $P < 0.01$, respectively, by Student’s t-test.

4.29 Chlorophyll content in leaves of control and CsF3H overexpressing transgenic lines F10, F9 and F12b under 0 mM NaCl, 50 mM NaCl and 150 mM NaCl stress. Significant differences from the control are denoted by one or two asterisk corresponding to $P < 0.05$ and $P < 0.01$, respectively, by Student’s t-test.

4.30 MDA content in leaves of control and CsF3H overexpressing transgenic lines F10, F9 and F12b under 0 mM NaCl, 50 mM NaCl and 150 mM NaCl stress. Significant differences from the control are denoted by one or two asterisk corresponding to $P < 0.05$ and $P < 0.01$, respectively, by Student’s t-test.

4.31 Histochemical staining of ROS accumulation with nitro blue tetrazolium (NBT) and diaminobenzidine (DAB) in control and CsF3H overexpressing transgenic tobacco line F10. NBT staining of in vitro grown seedlings of control and transgenic line F10 under unstressed conditions (a), under 50 mM NaCl stress (b), and under 150 mM NaCl stress (c). DAB staining of in vitro grown seedlings of control and transgenic line F10 under unstressed conditions (d), under 50 mM NaCl stress (e), and under 150 mM NaCl stress (f).

4.32 Reduction of Alternaria solani infestation symptoms in tobacco plants overexpressing CsF3H gene. Detached leaves from control and CsF3H overexpressing transgenic lines (F10, F9 and F12b) were inoculated with A. solani conidial spores and the lesion size was determined 3 days of post-inoculation (a). Bar diagram shows the average diameter of the expanding lesions in leaves of control and in transgenic lines F10, F9 and F12b (b). Significant differences from the control are denoted by one or two asterisk corresponding to $P < 0.05$ and $P < 0.01$, respectively, by Student’s t-test.

4.33 Radial gel diffusion assay for pectin methyl esterase (PME) activity measurement in leaf extract of control and CsF3H overexpressing transgenic tobacco lines F10, F9 and F12b. The red zonal area represent de-esterification of pectins observed with PME enzyme from leaf protein extract of control and transgenic lines after staining of gel plates with ruthenium red for 45 m (a). Bar diagram shows percent PME activity in leaves of control and transgenic tobacco lines F10, F9 and F12b. The PME activity of control tobacco plant was set to 100 % for calculating PME activity in transgenic lines (b). Radial gel diffusion PME assay in leaf extract of control and transgenic tobacco line F10 under 50 mM and 150 mM NaCl stress (c). Bar diagram shows percent PME activity in control and transgenic tobacco line F10 under 50 mM and 150 mM NaCl stress (d). The PME activity of control tobacco plant under 50 and 150 mM salt stress was set to 100 % for calculating PME activity in transgenic lines. Significant differences from the control are denoted by one or two asterisk corresponding to $P < 0.05$ and $P < 0.01$, respectively, by Student’s t-test. C- control tobacco plant under 50 mM NaCl stress and C’- control tobacco plant under 150 mM NaCl stress. Data represent average ± SD of three biological replicates.
4.34 Degree of pectin de-esterification determined through ruthenium red staining in control and CsF3H overexpressing transgenic tobaccos. Ruthenium red staining of microtome leaf section of control (a), CsF3H overexpressing F10 (b), F9 (c) and F12b (d) transgenic tobacco seedlings under unstressed conditions. Ruthenium red staining of microtome leaf section of control (e), CsF3H overexpressing F10 (b), F9 (c) and F12b (d) transgenic tobacco seedlings under 150 mM NaCl stress. The more intensity of red color in control tobacco leaf under both conditions indicated higher degree of pectin de-esterification in their cell wall.

4.35 Degree of pectin methyl esterification determined immunologically in roots of control and CsF3H overexpressing transgenic tobacco plants. Immunolocalization of low-methyl ester pectin with JIM5 antibody in root portion of 2-3 mm behind the root tip in control tobacco seedlings under unstressed conditions (a), under 50 mM NaCl (b) and under 150 mM NaCl (c) and in transgenic tobacco seedlings F10, F9 and F12b under unstressed conditions (d.g.j), under 50 mM NaCl (e,h,k) and under 150 mM NaCl (f.i,l).

4.36 Degree of pectin methyl esterification determined immunologically in roots of control and CsF3H overexpressing transgenic tobacco plants. Immunolocalization of high-methyl ester pectin with JIM7 antibody in root portion of 2-3 mm behind the root tip in control tobacco seedlings under unstressed conditions (a), under 50 mM NaCl (b) and under 150 mM NaCl (c) and in CsF3H transgenic tobacco seedlings F10, F9 and F12b under unstressed conditions (d.g.j), under 50 mM NaCl (e.h.k) and under 150 mM NaCl (f.i,l).

4.37 Effect of in vitro supplied flavonoids on the primary root length and degree of pectin esterification in roots of wild tobacco seedlings under 150 mM salt stress. Photographs depicting primary root system of 10 days old wild tobacco seedlings grown for next 3 days in MS media containing 150 mM NaCl alone (a), in MS media containing 150 mM NaCl and 5 µM EC (b) and in MS media containing 150 mM NaCl and 5 µM EGC (c). Primary root length of wild type seedlings grown in MS media containing 150 mM NaCl alone (W+150), in MS media containing 150 mM NaCl and 5 µM EC (W+150+5EC) and in MS media containing 150 mM NaCl and 5 µM EGC (W+150+5EGC) (d). Bar diagram shows percent PME activity in in vitro grown seedlings of wild tobacco exposed to MS media containing 150 mM NaCl only (W+150), to MS media containing 150 mM NaCl and 5 µM of EC (W+150+5EC) and to MS media containing 150 mM NaCl and 5 µM of EGC (W+150+5EGC) (e). Significant differences from the control (W+150) are denoted by one or two asterisk corresponding to P < 0.05 and P < 0.01, respectively, by Student’s t-test. The PME activity of wild tobacco seedlings was set to 100 % for calculating PME activity in transgenic lines. Data presented here is average ± SD of 10 tobacco seedlings. Immunolocalization of low-methyl ester pectin with JIM5 antibody in root portion of 2-3 mm behind the root tip in wild tobacco seedlings grown in MS media containing 150 mM NaCl alone (f), in MS media containing 150 mM NaCl and 5 µM EC (g) and in MS media containing 150 mM NaCl and 5 µM EGC (h). Immunolocalization of high-methyl ester pectin with JIM7 antibody in root portion of 2-3 mm behind the root tip in wild tobacco seedlings grown in MS media containing 150 mM NaCl alone (i), in MS media containing 150 mM NaCl and 5 µM EC (j) and in MS media containing 150 mM NaCl and 5 µM EGC (k). Ruthenium red staining of microtome leaf section of wild tobacco seedlings grown in MS media containing 150 mM NaCl alone (l), in MS media containing 150 mM NaCl and 5 µM EC (m) and in MS media containing 150 mM NaCl and 5 µM EGC (n).
Morphological characterization and yield parameters of *NtFLS* silenced transgenic tobacco lines compared to control. *NtFLS* silenced transgenics lines G12, A1, B1, and E13 were smaller in height as compared to control tobacco plant (*Nicotiana tabacum* cv xanthi). Flowering was delayed in *NtFLS* silenced transgenics (a). Pods derived from control flowers upon self pollination were grew to normal size. Whereas, self pollinated silenced transgenic lines G12, A2, B1 and E13 yielded smaller fruits. In *NtFLS* silenced lines pods and seed development was arrested, whereas control tobacco pods had a normal seed set (b). Pod weight in milligrams (c) and pod size (d) at equatorial cross section in millimetres of control tobacco plant and of *NtFLS* silenced transgenic tobacco lines (G12, A2, B1 and E13). Both pod weight and pod size was reduced in all silenced transgenic lines as compared to control. Values represent mean values ± SD (n=5). Significant differences from the control are denoted by one or two asterisk corresponding to P < 0.05 and P < 0.01, respectively, by Student’s t-test.

In vitro and *in vivo* pollen germination assays of control and *NtFLS* silenced transgenic tobacco. *In vitro* pollen germination assay of pollens from control tobacco plant (a) and from *NtFLS* silenced transgenic tobacco lines G12, A2, B1 and E13 (b) on germination media (GM) after 4 hrs of incubation. Graph depicts the germination frequency (pollen germination percentage) of pollens from control tobacco plant and from *NtFLS* silenced transgenic tobacco lines G12, A2, B1 and E13 on GM after 4 hrs of incubation (c). Pollen germination frequency was found to be reduced in silenced transgenic lines as compared to control tobacco. Only tubes longer than half the size of pollen grains was judged as germinated. Values are mean of three replications where tube length of 50 to 100 pollen grains was measured and are represented as mean ± SD. Significant differences from the control are denoted by one or two asterisk corresponding to P < 0.05 and P < 0.01, respectively, by Student’s t-test. Shape and surface characteristics of pollen tubes. The foremost part of a pollen tube of control tobacco plant showed a smooth, straight shape (d), whereas pollen tube of *NtFLS* silenced transgenic tobacco showed the kinked, and coiled shape (e). The arrows indicate the rough surface of the pollen tube. Histochemical staining of pollen tube growth in carpels after 2 days of pollination from control and *NtFLS* silenced line G12. Fertilized carpels were stained with aniline blue to specifically stain callose present in growing pollen tubes. Staining was conducted in control tobacco carpels after crossing with control plant pollens (f-j) and G12 line carpels after self-crossings (k-o). Callose in the pollen tubes is visible at the stigma (f and k), proliferation of pollen tube growth in the middle of the style (g, h, i and m). Pollen tubes of G12 line grew only nine-tenths of the way down the style (n). The tips of the pollen tubes are swollen in G12 (shown by arrow). Pollen tubes are not visible at the base of the style in G12 *NtFLS* silenced line (o) as compared to control carpels (j).
4.40 In vitro and in vivo pollen germination rescue assays of NtFLS silenced transgenic tobacco. Effect of quercetin on in vitro pollen germination rate of silenced transgenic pollens. Pollens were collected from freshly dehiscent anthers of NtFLS silenced tobacco plant and suspended in GM containing only DMSO added to final concentration of 1 µM (a), 10 nmol quercetin (b), 20 nmol quercetin (c) and 1 µM quercetin (d). Different developmental stages of flower bud (stage I, II, III and IV) in tobacco (Nicotiana tabacum L.) (e). Histochemical staining of pollen tubes growth in carpels of floral buds (stage II) from silenced transgenic lines exposed to different concentrations of quercetin i.e. 10 nmol, 20 nmol and 1 µM through pollen maturation media (PM). After 2 days of pollination, carpels were stained with aniline blue to specifically stain callose present in growing pollen tubes. Pollen tube growth in self pollinated carpels of floral bud of silenced transgenic lines exposed only to PM without any treatment (f-j), carpels of floral bud exposed to PM containing 10 nmol (k-o), 20 nmol (p-t) and 1 µM (u-y) quercetin. Pollen germination is visible at stigma region (f, k, p and u). It was found to be maximum with 1 µM (u) and least in transgenic pollens with no treatment (f). The pictures g-i, l-n, q-s and v-x show proliferation of pollen tube growth in the middle of the style. The pollen tubes grew only to nine-tenths of way down the style after 2 days of pollination in case of silenced floral buds exposed to 10 nmol (l-n), 20 nmol (q-s) quercetin and with no treatment (g-i). Whereas pollen tubes are reaching the base of the style in case of floral buds exposed to 1 µM quercetin (v-x). On the other hand, in untreated buds and in buds exposed to 10 nmol and 20 nmol quercetin, no pollen tubes are seen in carpels reaching the base of style (j, o and t) within the same time period. All micrographs are of the same magnification.

4.41 Endogenous free indole acetic acid (IAA) content in apical region of shoot of control and NtFLS silenced transgenics. Endogenous free IAA content was determined using Ultra Performance Liquid Chromatography (UPLC). UPLC chromatogram of 10 µg ml⁻¹ IAA standard showing sharp peak at retention time (RT) of 2.72 m. Absorbance spectra of this peak was measured by photodiode array detector and was observed at 222 nm (a). Chromatogram of endogenous IAA isolated from apical portion of control tobacco shoot showing peak at RT of 2.72 m (b). Chromatogram of endogenous IAA isolated from apical portion of NtFLS silenced transgenic line (G12) showing IAA peak at RT of 2.72 m (c). Graph depicts the endogenous content of IAA measured in apical region of control and silenced transgenic lines (G12 and A2) (d). IAA was found to be reduced in silenced transgenic lines as compared to control tobacco. The quantification was performed with three replications and is represented as mean ± SD. Significant differences from the control are denoted by one or two asterisk corresponding to P < 0.05 and P < 0.01, respectively, by Student’s t-test.

4.42 Changes in the relative transcript level of genes encoding phenylalanine ammonia lyase (NtPAL) (a), chalcone synthase (NtCHS) (b), chalcone isomerase (NtCHI) (c), flavanone 3-hydroxylase (NtF3H) (d) and flavonol synthase (NtFLS) (e) in tobacco shoots in response to 50 and 100 µM treatments of epicatechin (EC) and quercetin (Quer).

4.43 Changes in the relative transcript level of genes encoding phenylalanine ammonia lyase (NtPAL) (a), chalcone synthase (NtCHS) (b), chalcone isomerase (NtCHI) (c), flavanone 3-hydroxylase (NtF3H) (d) and flavonol synthase (NtFLS) (e) in tobacco roots in response to 50 and 100 µM treatments of epicatechin (EC) and quercetin (Quer).

4.44 The effects of different concentrations of flavonoids application on tobacco shoot and root development. Photographs show 7-days-old seedlings grown for 21 days on 0.1 % DMSO (A), 50 µM EC (B), 100 µM EC (C), 50 µM Quer (D) and 100 µM Quer (E). Upper panel is the top view of seedlings and lower panel is the vertical view of seedlings in petri plates. EC, epicatechin; Quer, quercetin.

4.45 Vascular organization in flavonoid treated and untreated control tobacco plants.
(A) Whole mount preparations of cleared leaf from tobacco seedlings grown on medium without flavonoids (a), with 50 μM EC (b), 100 μM EC (c), 50 μM Quer (d) and 100 μM Quer (e). Numerous parallel vessels were seen in the central and petiolar region of flavonoid treated plants. (B) Whole mount preparations of cleared primary root tips from tobacco seedlings grown on medium without flavonoids (f), 50 μM EC (g), 100 μM EC (h), 50 μM Quer (i) and 100 μM Quer (j). Arrows indicate numerous parallel vessels extended towards the root apex in 100 μM epicatechin treated tobacco seedlings. PR, petiolar region; CR, central region, RT, root tip; EC, epicatechin; Quer, quercetin.

4.46 Cell size comparisons in leaf cross-sections centered with central vein. Leaf cross-section of flavonoids untreated tobacco seedling (a). Leaf cross-section of 50 μM EC (b), 100 μM EC (c), 50 μM Quer (d) and 100 μM Quer (e) treated tobacco seedling. Red bars indicate a shift towards the smaller cell size of UE, LE, PP and SP that was observed with higher concentrations of EC and Quer. UE, upper epidermis, LE, lower epidermis; PP, palisade parenchyma; SP, spongy parenchyma; EC, epicatechin; Quer, quercetin.

4.47 Changes in the transcript level of genes encoding glutathione reductase (GR) (a), ascorbate peroxidase (APx) (b), catalase (CAT) (c), and glutathione S-transferase (GST) (d) enzymes in tobacco shoots in response to different treatments EC (EC; 50 and 100 μM) and Quer (Quer; 50 and 100 μM). Below gel picture, bar diagram shows relative transcript levels of the respective amplified bands. Expression analysis was repeated at least three times and representative one time gel pictures are presented. Data are means of three measurements ± SD. Black and grey bars show 26S rRNA and antioxidant enzyme transcript levels, respectively. C, control; EC, epicatechin; Quer, quercetin.

4.48 Changes in the transcript level of genes encoding glutathione reductase (GR) (a), ascorbate peroxidase (APx) (b), catalase (CAT) (c), and glutathione S-transferase (GST) (d) enzymes in tobacco roots in response to different treatments epicatechin (EC; 50 and 100 μM) and quercetin (Quer; 50 and 100 μM). Below gel picture, bar diagram shows relative transcript levels of the respective amplified bands. Expression analysis was repeated at least three times and representative one time gel pictures are presented. Data are means of three measurements ± SD. Black and grey bars show 26S rRNA and antioxidant enzyme transcript levels, respectively. C, control; EC, epicatechin; Quer, quercetin.