1. INTRODUCTION

 Review of literature 10
 Scope of the present study 23

2. MATERIALS AND METHODS

 2.1. Gene Expression Analysis

 2.1.1. Suppression Subtractive Hybridization (SSH) library

 2.1.1.1. Plant material 25
 2.1.1.2. RNA Isolation 25
 2.1.1.3. Double stranded cDNA synthesis 26
 2.1.1.4. Rsal digestion and adaptor ligation 26
 2.1.1.5. Hybridization 27
 2.1.1.6. PCR amplification of Subtracted product 27
 2.1.1.7. Cloning of SSH PCR products and transformation into \textit{E.coli} 28
 2.1.1.8. Determination of insert size by colony PCR 28
 2.1.1.9. Cryo preservation of SSH library clones 29
 2.1.1.10. Plasmid isolation and DNA sequencing 29
 2.1.1.11. Analysis of EST sequences 29
2.1.2. Expression studies on pathogenesis related (PR) protein encoding genes during different stages of infection

2.1.2.1. Plant Material 30

2.1.2.2. RNA extraction 30

2.1.2.3. First strand cDNA synthesis 30

2.1.2.4. Semi-quantitative RT-PCR analysis 31

2.2. Isolation and Characterization of the gene encoding Chitinase

2.2.1. Plant material 31

2.2.2. Preparation of total RNA and cDNA synthesis 32

2.2.3. Amplification of Full-length cDNA of \textit{CsCHIT} 32

2.2.4. Cloning of RACE product and transformation into \textit{E.coli} 32

2.2.5. Plasmid isolation and DNA sequencing 33

2.2.6. Sequence analysis 33

2.3. Characterization of purified Chitinase and documentation of its anti-fungal activity

2.3.1. Extraction and purification of the enzyme from tea leaves

2.3.1.1. Plant material 34

2.3.1.2. Enzyme extraction and purification 34

2.3.2. Chitinase activity assay 35

2.3.3. Characterization of purified chitinase
2.3.3.1. SDS–PAGE electrophoresis

2.3.3.2. Optimum pH for chitinase activity

2.3.3.3. Optimum temperature for chitinase activity

2.3.3.4. Effect of different chemicals on chitinase activity

2.3.3.5. Assay condition and data analysis

2.3.4. Antifungal assay of the purified chitinase - Bioassay on tea fungal pathogens

2.4. Detection of chitinase activity in tea cultivars for screening their resistance levels towards the disease

2.4.1. Plant material

2.4.2. Protein extraction

2.4.3. Quantitative chitinase assay

2.4.4. Qualitative chitinase assay

2.4.4.1. Preparation of the substrate and activity assay

2.4.4.2. Chitinase detection and quantification

2.5. Biochemical analysis

2.5.1. Differential expression of anti-oxidative enzymes and pathogenesis related (PR) proteins in infected and healthy leaves (first leaf) of tea cultivars with varied degrees of resistance/susceptibility

2.5.1.1.Anti-oxidative enzymes
2.5.1.1.1. Peroxidase (POX) 40
2.5.1.1.2. Ascorbate peroxidase (APX) 40
2.5.1.1.3. Superoxide dismutase (SOD) 41
2.5.1.2. Pathogenesis related (PR) proteins
2.5.1.2.1. Chitinase 42
2.5.1.2.2. β 1,3-Glucanase 42
2.5.1.2.3. Phenylalanine ammonia lyase (PAL) 43
2.5.1.3. Assay condition, protein estimation, and data analysis 43

2.5.2. Analysis of anti-oxidative enzymes and pathogenesis related (PR) proteins during different stages of blister blight infection

2.5.2.1. Antioxidative enzymes 44
2.5.2.2. Pathogenesis related (PR) proteins 44
2.5.2.3. Assay condition, protein estimation, and data analysis 44

2.5.3. Analysis of anti-oxidative enzymes and pathogenesis related (PR) proteins in different tissues of healthy and infected tea shoots

2.5.3.1. Antioxidative enzymes 45
2.5.3.2. Pathogenesis related (PR) proteins 45
2.5.3.3. Assay condition, protein estimation, and data analysis 45

2.6. Effect of pathogen infection on the flavanoid pathway specific genes

2.6.1. RNA Isolation and First strand cDNA synthesis 46
2.6.2. Semi-quantitative RT PCR analysis 46

3. RESULTS

3.1. Isolation of differentially expressed transcripts during blister infection using SSH library

3.1.1. RNA Extraction and library construction 48
3.1.2. EST sequencing and analysis

3.1.3. Gene Ontology

3.2. Expression studies on PR protein encoding genes during different stages of infection

3.3. Isolation and characterization of the gene encoding Chitinase

3.3.1. Cloning of the full-length CsCHIT 1

3.3.2. Analysis of the deduced CsCHIT 1 protein

3.4. Characterization of purified chitinase and documentation of its anti-fungal properties

3.4.1. Extraction and purification of the enzyme from tea leaves

3.4.2. Characterization of purified chitinase

3.4.2.1. SDS–PAGE electrophoresis

3.4.2.2. Optimum pH for chitinase activity

3.4.2.3. Optimum temperature for chitinase activity

3.4.2.4. Effect of different chemicals on chitinase activity

3.4.3. Antifungal assay of the purified chitinase - Bioassay on tea fungal pathogens

3.5. Detection of chitinase activity in tea cultivars for screening their resistance levels towards the disease

3.5.1. Quantitative assay

3.5.2. Qualitative assay

3.6. Differential expression of anti-oxidative enzymes and pathogenesis related proteins in infected and healthy leaves (first leaf) of tea cultivars with varied degrees of resistance/susceptibility

3.6.1. Anti-oxidative enzymes
3.6.1.1. Peroxidase (POX) 56
3.6.1.2. Ascorbate peroxidase (APX) 56
3.6.1.3. Superoxide dismutase (SOD) 57

3.6.2. Pathogenesis related (PR) proteins

3.6.2.1. Chitinase 57
3.6.2.2. β 1,3-Glucanase 57
3.6.2.3. Phenylalanine ammonialyase (PAL) 58

3.7. Analysis of Antioxidative enzymes and pathogenesis related (PR) proteins during different stages of blister blight infection

3.7.1. Antioxidative enzymes

3.7.1.1. Peroxidase (POX) 58
3.7.1.2. Ascorbate peroxidase (APX) 58
3.7.1.3. Superoxide dismutase (SOD) 59

3.7.2. Pathogenesis related (PR) proteins

3.7.2.1. Chitinase 59
3.7.2.2. β 1,3-Glucanase 59
3.7.2.3. Phenylalanine ammonialyase (PAL) 60

3.8. Analysis of antioxidative enzymes and pathogenesis related (PR) proteins in different tissues of healthy and infected tea shoots

3.8.1. Antioxidative enzymes

3.8.1.1. Peroxidase (POX) 60
3.8.1.2. Ascorbate peroxidase (APX) 60
3.8.1.3. Superoxide dismutase (SOD) 61

3.8.2. Pathogenesis related (PR) proteins

3.8.2.1. Chitinase 61
3.8.2.2. β 1,3-Glucanase 61
3.8.2.3. Phenylalanine ammonialyase (PAL) 61
3.9. Effect of pathogen infection on flavonoid pathway specific genes 61

4. DISCUSSION

4.1. Suppression Subtractive Hybridization (SSH) Library 64
4.2. Expression studies on pathogenesis related (PR) protein encoding genes during different stages of infection 68
4.3. Isolation and characterization of the gene encoding chitinase 72
4.4. Characterization of purified chitinase and documentation of its anti-fungal properties 73
4.5. Detection of chitinase activity in tea cultivars for screening their resistance levels towards the disease 74
4.6. Analysis of anti-oxidative enzymes and PR proteins in leaves during disease incidence, different stages of infection and in different tissues of healthy and infected bushes of the resistant and susceptible cultivars with respect to the healthy leaf
4.6.1. Anti-oxidative enzymes – Peroxidase, ascorbate peroxidase and superoxide dismutase 76
4.6.2. Pathogenesis related (PR) proteins – chitinase, β 1, 3-glucanase and phenylalanine ammonia lyase 78
4.7. Effect of pathogen infection on flavonoid pathway specific genes 79

SUMMARY 81
REFERENCES 85
SUPPLEMENTARY TABLE
LIST OF FIGURES

1. Representative figure of an uninfected healthy leaf and tea leaves showing the four different stages of blister blight infection.

2. RNA extracted from the healthy and infected leaves (four infection stages) of SA 6

3. Categorization of forward SSH library derived sequences based on their (A). biological function and (B). cellular component.

4. RNA extracted from the healthy and infected leaves (four infection stages) of TES 34.

5. Semi-quantitative RT-PCR analyses of PR protein encoding gene expression in SA 6 and TES 34 cultivars.

6. Expression analyses of the PR protein encoding genes in A. SA-6 and B. TES 34 during blister blight infection.

7. The full-length cDNA sequence and deduced amino acid sequence of CsCHIT.

8. (A) Comparison of the deduced amino acid sequence of CsCHIT with other CHITs from various organisms. B) Un-rooted dendrogram derived from the amino acid sequences of monocot, dicot and tea chitinase proteins.

9. Structural analysis of CsCHIT. (A) Secondary structure conformation parameters based on SOPMA. (B) Hydropathy plot of CsCHIT.

10. Elution profile of chitinase by sephacryl column chromatography showing the protein content (A_{280}) and chitinase activity of the column elutes.

11. Effect of pH and temperature on the activity of purified tea chitinase.

12. Spore germination inhibitory bioassay of purified chitinase (A) Blister blight and (B) grey blight spores.

15. Activity of anti-oxidants POX, APX, SOD in healthy and infected leaves of cultivars with varying degrees of resistance/susceptibility to blister blight disease.
16. Activity of PR proteins chitinase, β 1, 3-glucanase and PAL in healthy and infected leaves of cultivars with varying degrees of resistance/susceptibility to blister blight disease.

17. Activity of anti-oxidants POX, APX, SOD in healthy leaf (C) and in leaves with different stages of infection, from the cultivars SA-6 and TES-34.

18. Activity of PR proteins chitinase, β 1, 3-glucanase and PAL in healthy leaf (C) and in leaves with different stages of infection, from the cultivars SA-6 and TES-34.

19. Activity of anti-oxidants POX, APX, SOD in the different tissues of healthy and infected bushes of the cultivars SA-6 and TES-34.

20. Activity of PR proteins chitinase, β 1, 3-glucanase and PAL in the different tissues of healthy and infected bushes of the cultivars SA-6 and TES-34.

21. Semi quantitative RT-PCR analyses of the expression of eight genes involved in flavanoid pathway during blister blight infection in SA 6 and TES 34.

22. Expression analyses of the flavonoid pathway specific genes in (A). SA-6 and (B). TES 34 during blister blight infection.
1. Primers designed for the specific amplification of PR proteins for their expression analyses during different stages of blister blight infection.

2. Primers designed for the specific amplification of the genes involved in the flavonoid biosynthetic pathway.

3. Primary structural parameters of the deduced CsCHIT protein sequence

4. Summary of chitinase purification from crude tea leaf extract.

5. Effect of different chemicals on the activity of purified chitinase

6. Grouping of tea cultivars based on chitinase activity and diameter of the hydrolysed zone in the chitin-agarose plates.