Contents
Abstract i
Declaration vii
Dedication viii
Certificate of Supervisor ix
Certificate of Examiner x
Table of contents xi
List of figures xiv
Acknowledgement xix
List of author's publications xx

Chapter 1: Introduction 1
 1.1 Sensing technologies and Ion Sensitive Field Effect Transistors 2
 1.2 Need for suitable device structure for ISFET 4
 1.3 Thesis outline 5
 1.4 References 7

Chapter 2: General overview of ISFETs and analysis of conventional ISFET 9
 2.1 Introduction 10
 2.2 Theory of ISFET 10
 2.3 Operation principle of ISFET 15
 2.3.1 Site binding model 15
 2.3.2 Electrical double layer model 17
 2.4 Modeling 17
 2.5 Amperometric sensitivity 27
 xii
2.6 Simulation results and conclusions 30
2.7 References 35

Chapter 3: Novel Device Geometry – The Cylindrical ISFET 37
3.1 Introduction 38
3.2 Threshold voltage model of the cylindrical ISFET 38
3.3 Drain current model of the ISFET 50
3.4 Potential profile modeling 51
3.4.1 Electrolyte potential profile 51
3.4.2 Semiconductor potential profile 56
3.5 Amperometric Sensitivity 57
3.6 Simulation results and conclusions 58
3.7 References 77

Chapter 4: Cylindrical ISFET at nano dimension 80
4.1 Introduction 81
4.2 Quantum mechanical Effects modeling 81
4.3 Effective oxide thickness increase 89
4.4 Effect of insulator nano dimension on ϕ_{ox} 91
4.5 Conductance of nano cylindrical ISFET 93
4.6 Parameter fluctuation in very small sensor 93
4.7 Simulation and results and conclusions. 94
4.8 References 112

Chapter 5: Response of ISFET as a function of Reference electrode position and determination of a rule for reference electrode placement 115
5.1 Introduction 116
5.2 Model formulation 117
5.3 Simulation results and conclusions 126
5.4 References 131
Chapter 6: Conclusion 132

Appendix 137

Appendix A1: Amperometric sensitivity 138
Appendix A2: The cylindrical coaxial capacitance 138
Appendix A3: The effective channel width of a cylindrical MOSFET 142
Appendix A4: Calculation of reference electrode potential (E_{ref}) relative to vacuum 145