B

List of Figures

Chapter-1

Fig-1.1: Some considerations leading towards integrated optical planar waveguide sensors

Chapter-2

Fig-2.1: Asymmetric step index planar waveguide. Right: refractive index profile, where $n_f > n_s \geq n_c$.

Fig-2.2: Graded index planar waveguide

Fig-2.3: Schematic view of Integrated Optic waveguide sensor structure

Fig-2.4: (a) Asymmetric planar waveguide and (b) Zig-zag trajectory of a ray inside the film

Fig-2.5: Radiation mode in an asymmetric step-index planar waveguide

Fig-2.6: Ray path followed by a substrate radiation mode

Fig-2.7: Guided mode in an asymmetric planar waveguide, showing the ray path

Fig-2.8: Ray tracing a zig-zag path in an asymmetric step-index planar waveguide

Fig-2.9: Geometry used for the analysis of propagating modes in an asymmetric step-index planar waveguide

Fig-2.10: Range of values for the propagation constant β and the effective refractive index N for guided modes, substrate modes and radiation modes

Fig-2.11: Position of the effective refractive index N, relative to the refractive indices of the waveguide structure, for a mode close to the cut-off

Fig-2.12: Substrate radiation mode in an asymmetric step-index planar waveguide

Fig-2.13: Radiation mode in an asymmetric step-index planar waveguide

Fig-2.14: Analytical model of effective index method for 3D waveguide geometry

Fig-2.15: Classification of optical sensors

Fig-2.16: Basic structure of an optical fiber

Fig-2.17: Basic components of an optical fiber sensor system

Fig-2.18: Intrinsic fiber optic sensor
List of Figures

Fig-2.19: Evanescent wave fiber optic chemical sensor
Fig-2.20: Fluorescent fiber optic sensor probe
Fig-2.21: Bragg grating response, where $\lambda_g =$Bragg wavelength and $\Lambda =$grating period.
Fig-2.22: Schematic diagrams of (a) Michelson interferometer and (b) Mach-Zehnder interferometer
Fig-2.23: Polarization-based fiber optic sensor
Fig-2.24: a) Top-view of an IO MZI structure and b) Behavior of the modal field distribution in the waveguide structure
Fig-2.25: Evanescent wave sensor
Fig-2.26: Formation of evanescent wave
Fig-2.27: Penetration depth
Fig-2.28: The waveguide sensor: general working principle
Fig-2.29: Basic IO sensor effect. Changes ΔN of the effective refractive index N of a guided mode are induced by changes of the refractive-index distribution $n(z)$ in the vicinity of the waveguide surface, i.e., within the penetration depth Δz_c of the evanescent field in the sample C. Sensor effect (1): molecules transported by convection or diffusion adsorb on the surface forming an adlayer F' of thickness d_F and refractive index $n_{F'}$. Sensor effect (2): homogeneous change Δn_c of refractive index of (liquid) sample C

Fig-2.30: Calculated sensitivities $\frac{\partial N}{\partial d_F}, \frac{\partial N_{TM_0}}{\partial d_F}$ for TE_0 and TM_0 modes, and sensitivity $-\frac{\partial \tilde{N}}{\partial d_F}$ of difference interferometer vs. waveguide thickness d_F for adsorption of H$_2$O molecules from a gaseous sample, where $\tilde{N} = N_{TE_0} - N_{TM_0}$, $n_e = 1$, $n_F = 1.33$, $\lambda = 633$ nm. Top, waveguide of type (a) with parameters $n_F = 1.80$ and $n_s = 1.47$; bottom, waveguide of type (b) with parameters $n_F = 2.01$ and $n_s = 1.46$
List of Figures

Fig-2.31: Calculated sensitivities $\frac{\partial N_{TE}}{\partial n_c}, \frac{\partial N_{TM}}{\partial n_c}$ for TE₀ and TM₀ modes, and sensitivity $-\frac{\partial N}{n_c}$ of difference interferometer as a differential refractometer for aqueous solutions vs. waveguide thickness dᵢ, nₑ=1.33, λ=633 nm. Top waveguide of type (a); bottom, waveguide of type (b) as in Fig. 2.30

Fig-2.32: Calculated sensitivities $\frac{\partial N_{TE}}{\partial n_F}, \frac{\partial N_{TM}}{\partial n_F}$ for TE₀ and TM₀ modes, and sensitivity $\frac{\partial N}{n_c}$ of difference interferometer related to adsorption of molecules from a gaseous sample C inside the microporous wave guiding film F vs. its thickness dᵢ, nₑ=1 and λ=633 nm respectively

Fig-2.33: Schematic diagram of a five-layer nonlinear asymmetric metal-clad planar waveguide with their refractive indices

Fig-2.34: Step-index slab waveguide of width w and substrate, guide, and cover refractive indices nₛ, nᵢ, and nₑ.

Fig-2.35: Schematic structure of integrated waveguide sensor with a metamaterial layer

Fig-2.36(a): Schematic cross section of the Si₃N₄/SiO₂ ring slot-waveguide used for optical sensing of biomolecules. Triangles and Y-shaped symbols represent antigen and antibody molecules, respectively

Fig-2.36(b): Calculated quasi-TE mode of the ring slot-waveguide turning to the left (−x axis) with a radius of curvature of 70 μm and an operation wavelength of 1.3 μm

Fig-2.37: Planar sensor structure

Fig-2.38: (a) Schematic view of a slot-waveguide. (b) Calculated Eₓ profile of the quasi-TE eigen mode in a Si (nₛ = 3.45)/SiO₂ (nₛ=nₑ=1.44) slot-waveguide
List of Figures

at a wavelength of 1.55 μm. E-field is enhanced in the nano scale slot-region of refractive index n_s

Fig-2.39: Diagram of a composite optical waveguide structure

Fig-2.40: A schematic diagram of the slab waveguide sensor under consideration

Fig-2.41: Experimental set up for solution concentration sensing

Fig-2.42: (a) Structure of the composite OWG and the principle of operation. n_s, n_{B+}, and n_f are respectively, refractive index of the substrate (1.515), the K+-ion-exchanged layer (1.5195), and of the thin film. (b) Structure of the ion-exchanged composite OWG. The arrow shows how the guided light is transferred from one part of the OWG to another part via adiabatic transition

Fig-2.43: Schematic structures of the two types of waveguide sensors: (a) conventional waveguide sensor; (b) multilayer integrated waveguide sensor

Fig-2.44: Schematic representation of the slab waveguide under study. The grey area indicates the normal electric field component of the TM mode in a large-guidance waveguide

Fig-2.45: Important Classes of Hydrocarbon Compounds in Crude Petroleum

Fig-2.46: Fractional Distillation Process: Step-by-Step

Fig. 2.47: Overview of possible techniques and active research areas for in-vivo glucose measurements.

Fig-2.48: Technologies under development for glucose sensors: MIR - mid-infrared; NIR - near infrared

Chapter-3

Fig- 3.1(a): Three-dimensional schematic view of planar optical waveguide sensor with sensing region (SR) placed on the top of silica on silicon substrate and (b) Cross sectional view of waveguide core along xz-plane AA'

Fig- 3.2: Refractive index profile for the leaky structure
List of Figures

Fig-3.3: Waveguide sensitivity versus n_c with $n_a=1.45$ and $x_2-x_1=475$ μm for proposed waveguide structure (solid line) and previous works (dotted line)

Fig-3.4: Effective index model of waveguide as shown in Fig. 1 [$N_i =$ effective index of two dimensional Waveguide - 1 and $n_{sub}=$refractive index (RI) of substrate]

Fig-3.5: β/k_0 versus core thickness of proposed waveguide sensor and cylindrical structures for TE mode and TM mode with $n_{sub} = 1.45$ and $n_c = 1.46$ and $x_2-x_1=475$ μm respectively

Fig-3.6: Chemical Wet Bench

Fig-3.7: RCA-1 Cleaning Process

Fig-3.8: RCA-2 Cleaning Process

Fig-3.9: (a) HF solution dipped Wafer

Fig-3.9(b): Blow dry with Nitrogen

Fig.-3.10: Schematic diagram of an oxidation furnace

Fig.-3.11: Digital temperature controller

Fig.-3.12: (i) Oxidation Furnace, (ii) Front view of the furnace chamber (iii) Back view along with bubbler and gas (Installed at CeNSE, IISc.)

Fig.-3.13: Bubbler

Fig.-3.14: Unloaded Si-wafer after oxidation

Fig.-3.15(a): Ellipsometer Measurement System (Model: XLS100) (Installed at CeNSE, IISc., Bangalore)

Fig.-3.15(b): Schematic of Ellipsometer

Fig.-3.16: Measured thickness of SiO$_2$ layer \sim1 μm deposited using thermal oxidation

Fig.-3.17: PECVD system (Oxford PlasmaLabSystem100) (Installed at CeNSE, IISc.)

Fig.-3.18: Process parameters for deposition of SiO$_2$ layer using PECVD

Fig.-3.19: Measured thickness of SiO$_2$ layer \sim2 μm deposited using PECVD

Fig.-3.20: PECVD technology (courtesy: Oxford Instrument System)

Fig.-3.21: Process parameters for deposition of SiON layer using PECVD
List of Figures

Fig.-3.22: Measured thickness of SiON layer ~1.5 μm deposited using PECVD
Fig.-3.23: Refractive index variation of SiON films as a function of N₂O and NH₃
Fig.-3.24: Microtech LW 405A Laser Writer used for Mask Preparation (Installed at CeNSE, IISc.)
Fig.-3.25: Patterned Mask for Photolithography
Fig.-3.26: First Nano Drive-in Furnace (Installed at CeNSE, IISc.)
Fig.-3.27: FTIR analysis of SiON layer (1: Si-O-H, 2: -Si-H, 3: -N-H₂ and 4: Si-O-H, -Si-H bonds respectively)
Fig.-3.28: Photoresist on the sample (a) before spinning (b) after spinning
Fig.-3.29: Wet Bench and Spin coater (Installed at CeNSE, IISc.)
Fig.-3.30: EVG 620 Mask Aligner Photolithography Set-up (CeNSE, IISc.)
Fig.-3.31: Photolithography steps
Fig.-3.32(a): Negative Photolithography
Fig.-3.32(b): Positive Photolithography (www.me.ccny.cuny.edu)
Fig.-3.33: RF sputtering unit (Installed at CeNSE, IISc.)
Fig.-3.34: Process parameters used for Cr metallization
Fig.-3.35: Optical Microscope (Model: Leika DFC290 at CeNSE, IISc.)
Fig.-3.36: RIE Set-up, F based (PlasmaLabSys-Oxford Instrument System), CeNSE
Fig.-3.37: Dektak Set-up for step height measurement (CeNSE, IISc.)
Fig.-3.38: Step height measurement after RIE of SiON layer using Dektak system (depth~1.71 μm)
Fig.-3.39: SEM image of fabricated sensor
Fig.-3.40: Schematic block diagram of a power measurement set-up for use of the planar waveguide based sensor
Fig.-3.41: Power measurement set-up for use of three layer planar waveguide as sensor for measurement of glucose concentration
List of Figures

Fig-3.42: Normalized power versus length of the wave guide along z direction for different $(x_2-x_1) \sim 375 \mu m$, 475 μm and 575 μm with $n_{sub}=1.45$, $n_a=1.33$ and $n_c=1.46$. The cross sign indicates experimental point for $x_2-x_1=475 \mu m$

Fig-3.43: Normalized power versus refractive index for waveguide sensor with $z=100,000 \mu m$, 120,000 μm and 150,000 μm with $n_c=1.46$ and $2x_1=50 \mu m$. (The cross points represent experimental results of glucose solution as sensing region). The black dot corresponds to power $W(z)=0.56$ mW and $W(0)=0.8$ mW, corresponding to refractive index ~ 1.3341 at measured glucose concentration

Fig.-3.44: Abbe Refractometer

Chapter-4

Fig-4.1: 3D view of the planar optical waveguide sensor with sensing region placed on the top of silica on silicon substrate

Fig-4.2: Normalized power versus length of the waveguide along z-direction for different $(x_2-x_1) \sim 375 \mu m$, 475 μm and 575 μm with $n_{sub}=1.45$ and $n_c=1.46$ respectively

Fig-4.3: Waveguide sensitivity versus n_c of the proposed waveguide structure with different core width $(2x_1)$

Fig-4.4: Photograph of the experimental set up for adulteration detection using planar waveguide optical sensor

Fig-4.5: Block diagram of the experimental set up for use of the planar waveguide based sensor for adulteration detection

Fig-4.6: Photograph of the Abbe Refractometer (Model: CAR-02 Make: Contech) for Refractive Index Measurement

Fig-4.7: Refractive index versus kerosene concentration
List of Figures

Fig-4.8: Refractive index versus kerosene concentration
Fig-4.9: Refractive index versus kerosene concentration
Fig-4.10(a): Normalized power versus diesel concentration
Fig-4.10(b): Normalized power versus kerosene concentration
Fig-4.10 (c): Normalized power versus diesel concentration
Fig-4.10(d): Normalized power versus kerosene concentration for petrol+diesel (5%), petrol+diesel (10 %) and petrol+diesel (20 %)

Chapter-5

Fig-5.1: Block diagram showing the proposed concept of rapid diabetes detection using optical waveguide sensor
Fig-5.2: Photograph of the experimental set up
Fig-5.3: (a) Integrated plasma/serum generation chip for development of sensor system. (Product code: 15-1503-0168-02, microfluidic ChipShop GmbH, StockholmerStr.20D-07747 Jena, Germany) (b) Close-up of one plasma/serum generation unit
Fig-5.4: Schematic of the planar waveguide sensor structure
Fig-5.5: Normalized power versus length of the wave guide along z direction for different $(x_2-x_1) \sim 850 \mu m, 950 \mu m$ and 1050 \mu m with $n_{sub}=1.45$, $n_s=1.329$ and $n_e=1.46$ respectively
Fig-5.6: Schematic diagram of the capillary interfacing tube connected with LOC
Fig-5.7: Viscosity versus glucose level for blood of rat and human blood as measured by a conventional viscometer
Fig-5.8:(a) Schematic of the plasma fluid flow inside the interfacing capillary tube of length $L_{interface}$ and (b) Velocity distribution curve
Fig-5.9: Waveguide sensitivity versus n_e with $n_s=1.45$ and $x_2-x_1=950 \mu m$ for proposed waveguide structure (solid line) and previous works [18] (dotted line)
B

List of Figures

Fig-5.10: SEM image of the waveguide sensor

Fig-5.11: (a) Chemical structure of Alloxan and (b) IUPAC nomenclature

Fig-5.12: Normalized power versus glucose level for three different groups of rat A₁, A₂ and A₃. The (ξ) sign represents for rat A₂ with dose 90 mg/kg body weight. The (Δ) sign represents for rat A₁ with dose 60 mg/kg body weight. The sign (+) represents for rat A₃ with dose 110 mg/kg body weight

Fig-5.13: Refractive index (nᵣ) of blood plasma versus glucose level (as measured by Abbe Refractometer) for all three groups of rats A₁, A₂ and A₃

Fig-5.14: Glucose level (mg/dl) variation with time versus Number of days for rat from A₂ group with alloxan dose 90 mg/kg body weight