Chapter 2

Integrated Planar Waveguide Optical Sensor – A Review Study

My scientific studies have afforded me great gratification; and I am convinced that it will not be long before the whole world acknowledges the results of my work.

- Gregor Mendel
Outline of the Chapter:

2.1 Introduction

2.2 Fundamentals of optical waveguide
 2.2.1 Wave equation in symmetric slab waveguide
 2.2.2 Planar waveguides and the modes
 2.2.2.1 Guided modes
 2.2.2.2 Radiation and leaky modes
 2.2.3 Introduction to Numerical methods for approximate modal analysis
 2.2.3.1 Effective Index Method (EIM)
 2.2.3.2 Finite Element Method (FEM)
 2.2.3.3 Finite Difference Time Domain (FDTD) Method
 2.2.3.4 Beam Propagation Method (BPM)

2.3 Optical sensor and its Classification
 2.3.1 Fiber Optic (FO) sensors and classification
 2.3.1.1 Intensity Based Fiber Optic Sensor
 2.3.1.2 Wavelength Modulated Fiber Optic Sensors
 2.3.1.3 Phase Modulated Fiber Optics Sensors
 2.3.1.4 Polarization Modulated Fiber Optic Sensors
 2.3.2 Integrated Optical Waveguide Sensors
 2.3.2.1 Integrated Optical Interferometers
 2.3.2.2 Grating-Coupler Sensors
 2.3.2.3 Evanescent-Wave and Surface Plasmon Resonance Sensors
 2.3.3 Basic Principle: Optical Planar Waveguide Sensors
 2.3.3.1 Integrated Optic Planar Waveguide Sensor Effect
 2.3.4 Comparison between fiber optic sensor and integrated optical planar waveguide sensor
 2.3.5 Requirement of IO planar waveguide sensors

2.4 Performance parameters of optical sensors
 2.4.1 Sensor Sensitivity
 2.4.2 Limit of Detection (LOD)
 2.4.3 Limit of Quantization (LOQ)
 2.4.4 Selectivity or Specificity
 2.4.5 Sample Volume

2.5 Review on planar waveguide materials and fabrication technologies

2.6 Optical planar waveguide sensor and applications-a review study
 2.6.1 Refractometric optical sensing and petroleum fuel adulteration
 2.6.1.1 Causes of petroleum adulteration
 2.6.1.2 Impacts due to petroleum adulteration
 2.6.1.3 Petroleum adulteration detection as reported by earlier authors
 2.6.1.4 Status of petroleum adulteration in Indian context
 2.6.2 Integrated optical waveguide sensor as detection element for Lab-on-a-Chip sensing application
 2.6.2.1 Non-invasive sensing approach for measurement of glucose concentration
 2.6.2.2 Significance of sensing glucose
2.6.2.3 Glucose concentration in human physiological fluids – blood
2.6.2.4 Challenges of glucose sensors and motivation of planar waveguide sensor with Lab-on-chip for glucose concentration measurement

2.7 Conclusion
2.8 List of References
2.1 Introduction

Recently, optical techniques have been demonstrated for sensing applications due to its high sensitivity, selectivity and low detection time. Such sensing that make use of change of light energy through bio/chemical/mechanical processes into a detectable signal adds to intrinsic advantages because of its accuracy. As compared to other existing sensing technologies, the strength and versatility of optical sensors lie in the wide range of optical properties that serve to generate the sensing signal. These properties include, but are not limited to refractive index, optical absorption, fluorescence, polarization, and even nonlinear optical processes such as lasing, Raman scattering, and multi-photon absorption and emission. When used alone or in combination, the sensing signals can provide vast amount of information regarding the presence and interaction of bio/chemical molecules. As a result, optical sensors have broad applications in clinical diagnostics, biotechnology industry, pharmaceuticals, and petroleum adulteration. In this direction, waveguide optics has become attractive for sensing application which can be summarized as follows:

- High sensitivity/specificity.
- Immunity to any kind of electromagnetic interference (E.I).
- Small size, light weight and great flexibility, that allow access to otherwise restricted areas.
- Capability of resisting to chemically aggressive and ionizing environments.
- Easy interface with fiber optic network.
- Low detection time

There are three basic characteristics for performance evaluation of an optical sensor.

- Light–analyte interaction: Stronger light-matter interaction usually results in a higher sensitivity and better (e.g., lower) detection limit.
- Sensor miniaturization: These are directly related to sample consumption, device portability, detection time, and detection cost.
- Integration of fluidics with optical sensing elements: Effective and efficient fluidics not only reduces the sample consumption and hence the cost, but also enhances light-analyte interaction and expedites the detection processes.

In this chapter, initially we have started with fundamentals of optical waveguide, as its principle forms the basis for optical sensing mechanism. We have described different types of optical sensors such as fiber optic sensor and planar waveguide sensors. Since the proposed sensor has been used for detecting adulteration in chapter-4 of this doctoral research, in this regards, a review has also been done on sensors used for detection of adulteration using waveguide sensors. Finally, we have described works on sensors used for detection of glucose level in blood, as reported by earlier authors from the existing literature as the proposed sensor have been used for detection of glucose level in blood as described in chapter-5 of this Ph. D. thesis.

2.2 Fundamentals of optical waveguide

Planar waveguides are optical structures that confine optical radiation along the direction of propagation [1]. Considering the refractive index distribution in the planar waveguide structure, these can be classified as step-index waveguides or graded index waveguides. The step-index planar waveguide is the simplest structure for light confinement, and is formed by a uniform planar film with a constant refractive index (homogeneous film, \(n_f = \text{constant} \)), surrounded by two dielectric media of lower refractive indices [2]. The homogeneous upper medium, or cover, has a refractive index of \(n_c \), and the lower medium, with refractive index \(n_s \), is often called substrate. Usually, it is assumed that the refractive index of the cover is less than or equal to the refractive index of the substrate, \(n_c \leq n_s \), and in this way we have \(n_f > n_s \geq n_c \).

If the upper and the lower media are the same (equal optical constants), the structure forms a symmetric planar waveguide. On the other hand, in integrated optics if the upper and lower media are different, then it is known as an asymmetric planar waveguide (Fig. 2.1). If the high index film is not homogeneous, but its refractive index
is depth (thickness of the waveguide) dependent (along the x-axis in Fig. 2.2), the structure is called a graded index planar waveguide [3]. Usually the refractive index is maximum at the top surface, and its value decreases with thickness until it reaches the value corresponding to the refractive index of the substrate (Fig. 2.2).

Fig-2.1: Asymmetric step index planar waveguide. Right: refractive index profile, where \(n_f > n_s \geq n_c \) [1].

Fig-2.2: Graded index planar waveguide [1].

Asymmetric step-index planar waveguides are fabricated by depositing a high-index film on top of a lower index substrate, by means of physical methods (thermal evaporation, molecular beam epitaxy, sputtering, etc.) or chemical methods (chemical vapour deposition, metal-organic chemical vapour deposition etc.).

The more accurate description of light propagation within a waveguide is obtained by means of Maxwell’s equations. When the geometric boundary conditions at media
interfaces are introduced, only discrete solutions of the wave equations are permitted. This means that only discrete waves can propagate, namely 'modes', characterized by discrete amplitudes and discrete velocities [4] [5]. Waveguides can be single-mode or multimode according to whether a single or a multiplicity of modes can propagate. Once the materials constituting the waveguide are set for a given wavelength, the number of supported modes depends on waveguide dimension, namely on the fiber core radius or the planar waveguide thickness. A characteristic of a guided mode which is particularly important for sensing devices is its spatial amplitude distribution. Often, in fact, the interaction between the propagating mode and the quantity to be measured (the measurand) occurs through the evanescent field of the mode itself, namely its exponentially-decreasing tail.

2.2.1 Wave equation in symmetric slab waveguide

![Fig-2.3: Schematic view of Integrated Optic waveguide sensor structure](image)

Fig-2.3 shows the schematic view of a symmetric waveguide consisting of a waveguide layer of refractive index n_g having lightwave confined, top and bottom cladding layers

© A. Dutta @ Tezpur University

Page 2.6
each having of refractive indices n_c respectively. The wave propagation of the waveguide (Fig. 2.3) can be analysis considering the Maxwell equation [4-5] as follows,

$$\nabla \times E = -\mu_0 \frac{\partial H}{\partial t} \quad (2.1)$$

and

$$\nabla \times H = \varepsilon_0 n^2 \frac{\partial E}{\partial t} \quad (2.2)$$

where n is the refractive index. Also the plane-wave propagation can be define as

$$E = E(x, y) e^{j(\alpha x - \beta z)} \quad (2.3)$$

$$H = H(x, y) e^{j(\alpha y - \beta z)} \quad (2.4)$$

Substituting Eqs. (2.3) and (2.4) into Eqs. (2.1) and (2.2) respectively, we obtain the following two set of equations for the electromagnetic field components:

$$\begin{align*}
\frac{\partial E_z}{\partial y} + j \beta E_y &= -j \omega \mu_0 H_x \\
- j \beta E_x - \frac{\partial E_z}{\partial x} &= -j \omega \mu_0 H_y \\
\frac{\partial E_y}{\partial x} - \frac{\partial E_x}{\partial y} &= -j \omega \mu_0 H_z
\end{align*} \quad (2.5)$$

$$\begin{align*}
\frac{\partial H_z}{\partial y} + j \beta H_y &= j \omega \varepsilon_0 n^2 E_x \\
- j \beta H_x - \frac{\partial H_z}{\partial x} &= j \omega \varepsilon_0 n^2 E_y \\
\frac{\partial H_y}{\partial x} - \frac{\partial H_x}{\partial y} &= j \omega \varepsilon_0 n^2 E_z
\end{align*} \quad (2.6)$$

From the Fig. 2.3, it is observed that both the electromagnetic fields: electric field \((E)\) and magnetic field \((H)\) are y-axis independent i.e. $\frac{\partial E}{\partial y} = 0$ and $\frac{\partial H}{\partial y} = 0$. Substituting these relations into Eqs. (2.5) and (2.6), two independent electromagnetic modes are obtained, which are denoted as TE mode and TM mode respectively. The TE mode satisfies the following wave equation:

$$\frac{d^2 E_x}{d x^2} + (k^2 n^2 - \beta^2) E_y = 0 \quad (2.7)$$
from (2.8)-(2.10), it is seen that the tangential components E_y and H_z should be continuous at the boundaries of two different media and the electric field component along the z-axis is zero (i.e. $E_z = 0$). Since the electric field lies in the plane that is perpendicular to the z-axis, this electromagnetic field distribution is called Transverse Electric (TE) mode.

The equation (2.6) can be written by considering y independency for TM mode which satisfies the following wave equation:

$$
\frac{d}{dx} \left(\frac{1}{n^2} \frac{dH_y}{dx} \right) + \left(k^2 - \frac{\beta^2}{n^2} \right) H_y = 0 \tag{2.11}
$$

where $E_z = \frac{\beta}{\omega \varepsilon_0 n^2} H_y \tag{2.12}$

$$
E_z = \frac{j}{\omega \varepsilon_0 n^2} \frac{dH_y}{dx} \tag{2.13}
$$

$$
E_y = H_x = H_z = 0 \tag{2.14}
$$

Thus the Eq. (2.14) gives the magnetic field component along the z-axis is zero (i.e. $H_z = 0$). Since the magnetic field lies in the plane that is perpendicular to the z-axis, this electromagnetic field distribution is called Transverse Magnetic (TM) mode. The solution in the case of light propagation with TM polarization is basically the same for the TE polarization, with the exception that the boundary conditions are slightly different, because of the factor $(1/n^2)$ in the continuity of the magnetic field component derivative.

2.2.2 Planar waveguides and the modes

Light propagation in the optical waveguide has been analyzed by examining the case of an asymmetric planar waveguide from the point of view of ray optics.
We consider the planar waveguide depicted in Fig. 2.3, where we have assumed that the refractive index of the film \(n_f \) is higher than the refractive index corresponding to the substrate \(n_s \) and the upper cover \(n_c \). In addition, we assume the usual situation in which the relation \(n_f > n_c \) is fulfilled. In this way, the critical angles that define Total Internal Reflection (TIR) for the cover–film interface \((\theta_{1C}) \) and the film–substrate boundary \((\theta_{2C}) \) are determined by:

\[
\theta_{1C} = \sin^{-1}\left(\frac{n_c}{n_f}\right) \\
\theta_{2C} = \sin^{-1}\left(\frac{n_s}{n_f}\right)
\]

In addition, as we have \(n_f > n_s \geq n_c \), it follows that the critical angles fulfill the relation \(\theta_{2C} > \theta_{1C} \). If now we fix our attention to the propagating angle \(\theta \) of the light inside the film [Fig. 2.4], three situations can be distinguished:

(i) \(\theta < \theta_{1C} \). In this case, if the ray propagates with internal angles \(\theta \) lower than the critical angle corresponding to the film–cover interface \(\theta_{1C} \), the light penetrates the cover, as well as the substrate, because \(\theta_{2C} > \theta_{1C} \). Thus, the radiation is not confined to the film, but travels in the three regions. This situation corresponds to radiation modes, because the light radiates to the cover layer and the substrate (Fig. 2.5).
(ii) $\theta_1 < \theta < \theta_2$. Light travelling in these circumstances is totally reflected at the film-cover interface, thus it cannot penetrate the cover region. Nevertheless, the radiation can still penetrate the substrate, and therefore it corresponds to substrate radiation modes, or in short, substrate modes (Fig. 2.6).

(iii) $\theta_2 < \theta < \frac{\pi}{2}$. In this situation, the ray will suffer total internal reflection (TIR) at the upper and lower interfaces, and thus the radiation is totally confined and cannot escape the film. This corresponds to a guided mode (Fig. 2.7).
The optical ray approach for the guided modes in planar optical waveguides, considering a ray of light inside the film moving on a zig-zag path. The first condition which a ray of light must fulfill in order to be confined in the film region is that the angle of incidence at the upper and lower interfaces must be higher that the critical angles at the cover–film and film–substrate boundaries (Fig. 2.8).

![Fig-2.8: Ray tracing a zig-zag path in an asymmetric step-index planar waveguide [1].](image)

The general solution of the wave equation discussed in the previous section have been applied to the case of guided modes supported by asymmetric step-index planar waveguides, considering the geometry as shown in Fig. 2.9.

2.2.2.1 Guided modes
The general solution discussed in the previous section 2.2.1 can easily be applied to the case of guided modes supported by asymmetric step-index planar waveguides, considering the geometry as shown in Fig. 2.9.

![Fig-2.9: Geometry used for the analysis of propagating modes in an asymmetric step-index planar waveguide [1].](image)
The three media have refractive indices \(n_c \) (cover), \(n_f \) (film) and \(n_s \) (substrate), and are separated by planar boundaries perpendicular to the \(x \)-axis, the light propagation being along the \(z \)-axis. We further assume that \(n_f > n_s \geq n_c \) and that the plane \(x=0 \) corresponds to the cover–film boundary. Therefore, if the film thickness is \(d \), the film–substrate interface is located at the plane \(x = -d \) respectively.

Guided TE-modes

Although step-index planar waveguides are the structures inherently inhomogeneous, within each of the three regions the refractive indices are constant. Thus, considering each region separately, the wave equation for TE modes is expressed as shown in Eq. (2.7).

![Diagram](https://via.placeholder.com/150)

Fig-2.10: Range of values for the propagation constant \(\beta \) and the effective refractive index \(N \) for guided modes, substrate modes and radiation modes [1].

Fig. 2.10 shows the range of values for the propagation constant \(\beta \) and the effective refractive index \(N \) for guided modes, substrate modes and radiation modes. The propagation constant \(\beta \) associated with a particular mode must fulfill the condition:

\[
k_0 n_s < \beta < k_0 n_f
\]

(2.17)

Further, the effective refractive index, \(N \) of the guided mode must lie in between the refractive index of the film \(n_f \) and the refractive of the substrate \(n_s \) (reference to Fig. 2.9).

\[
n_s < N < n_f
\]

(2.18)
The wave equation (2.7) in each homogeneous region can be written as:

\[
\frac{d^2 E_y}{dx^2} - \gamma_c^2 E_y = 0 \quad x \geq 0 \quad \text{(Cover)}
\]

\[
\frac{d^2 E_y}{dx^2} + K_f^2 E_y = 0 \quad 0 > x > -d \quad \text{(Film)}
\]

\[
\frac{d^2 E_y}{dx^2} - \gamma_s^2 E_y = 0 \quad x \leq -d \quad \text{(Substrate)}
\]

where the three parameters \(\gamma_c \), \(K_f \) and \(\gamma_s \) are given by:

\[
\gamma_c^2 = \beta^2 - k_0^2 n_c^2
\]

\[
K_f^2 = k_0^2 n_f^2 - \beta^2
\]

\[
\gamma_s^2 = \beta^2 - k_0^2 n_s^2
\]

By solving the differential equations (2.22)-(2.24), the electric fields in the cover, film and substrate regions can be expressed as:

\[
E_y = \begin{cases}
A e^{-\gamma_c x} & \text{for } x \geq 0 \\
Be^{iK_f x} + Ce^{-iK_f x} & \text{for } -d < x < 0 \\
De^{i\beta x} & \text{for } x \leq -d
\end{cases}
\]

The boundary conditions require that \(E_y \) and \(dE_y/dx \) must be continuous at the cover–film interface (\(x=0 \)) and at the film–substrate frontier (\(x=-d \)), giving place to four equations that relate the constant parameters \(A, B, C \) and \(D \) and the propagation constant \(\beta \). Therefore, we have five unknown quantities to be determined from only a set of four equations. Indeed, one of the constant parameters cannot be determined and should remain free (for instance, the parameter \(A \)), and it will be determined once the energy carried by the propagating mode is settled. By solving this set of equations, and after cumbersome calculation, the following equation is obtained:

\[
\tan(K_fd + m\pi) = \frac{\gamma_c}{K_f} + \frac{\gamma_s}{K_f} \frac{1}{\gamma_c} \left(\frac{\gamma_s}{K_f} \right) \left(\frac{\gamma_s}{K_f} \right) \quad \text{where } m=0, 1, 2, 3 \ldots
\]
This relation is considered as the dispersion relation for the asymmetric step index planar waveguide, and is a transcendental equation involving the parameters that define the waveguide structure (n_e, n_r, n_s and d), the working wavelength (λ) and the propagation constant β of the guided mode, and from which one can calculate numerically the propagation constant β. In general, there exist several solutions for the propagation constant β depending on the integer number m. This integer number m is called the mode order, and the associated propagation constant is referred as β_m.

It is convenient to define a set of parameters, called normalized parameters, in such a way that the transcendental equation (2.26) can be universalized for any asymmetric step-index waveguide. These parameters are defined as:

\begin{align*}
 b &= \left(\frac{n_r^2 - n_s^2}{n_f^2 - n_s^2} \right) \, (2.27) \\
 V &= k_0 d \left(\frac{n_r^2 - n_s^2}{n_f^2 - n_s^2} \right)^{1/2} \, (2.28) \\
 a &= \left(\frac{n_s^2 - n_r^2}{n_r^2 - n_s^2} \right) \, (2.29) \\
 \tan \left[V \sqrt{1 - b} \right] &= \frac{\sqrt{1 - b} + \sqrt{b + a}}{1 - \sqrt{b(b + a)}} \, (2.30)
\end{align*}

In general, Eq. (2.26) or (2.30) admit a finite number of solutions for a finite number of the integer, m and thus the waveguide will support a finite number of guided modes. In this case, we refer to it as a multi-mode waveguide. In the particular case in which the dispersion equation only admits a solution for $m=0$, the waveguide is called a monomode or single mode waveguide.

Guided TM modes

In this case we are interested in the determination of the electromagnetic field structure within the planar waveguide based on the magnetic field, because in TM polarization the magnetic field has a single component (H_y). The wave equation for TM propagation in a homogeneous region can be expressed as:
Following a similar procedure to that performed for TE modes in section 2.2.2.1, a transcendental equation for confined TM waveguide modes in terms of the normalized parameters is obtained as:

\[
\tan \left[V \sqrt{1-b} \right] = \frac{1}{\gamma_1} \sqrt{1-b} \frac{1}{\gamma_2} \sqrt{1-b} - \frac{1}{\gamma_1 \gamma_2 (1-b)} \frac{b+a}{\sqrt{b(b+a)}}
\]

(2.32)

This is the dispersion relation for TM guided modes of an asymmetric step-index planar waveguides. In this equation we have defined, (say, for simplicity) the parameters as

\[
\gamma_1 = \left(\frac{n_r}{n_f} \right)^2, \quad \gamma_2 = \left(\frac{n_s}{n_f} \right)^2 = \gamma_1 - a(1-\gamma_1)
\]

Cut-off

An important aspect concerning waveguides is to know what should be the minimum film width necessary for the waveguide support of a specific mode of order \(m\), at a given wavelength. In this situation, the effective refractive index of this particular mode \(N\) should be very close to the substrate refractive index \(n_s\), as it is shown schematically in Fig. 2.11.

![Position of the effective refractive index N, relative to the refractive indices of the waveguide structure, for a mode close to the cut-off.](image)

Fig-2.11: Position of the effective refractive index \(N\), relative to the refractive indices of the waveguide structure, for a mode close to the cut-off [1].
In this case, it yields:

$$N = n_s \Rightarrow b = \left(\frac{N^2 - n_s^2}{n_f^2 - n_s^2} \right) = 0$$ \hspace{1cm} (2.33)

The normalized film thickness V for TE and TM modes at the cut-off is given by,

$$V_{c}^{TE} = \tan^{-1} \left(d^{1/2} + m \pi \right) ; \text{TE modes}$$ \hspace{1cm} (2.34)

$$V_{c}^{TM} = \tan^{-1} \left(\frac{d^{1/2}}{\gamma_2} \right) + m \pi ; \text{TM modes}$$ \hspace{1cm} (2.35)

From these relations, two important conclusions can be deduced:

(i) As n_c must be lower than n_f, it follows that $\gamma_1 = \left(\frac{n_c}{n_f} \right)^2 < 1$, and consequently it holds that $V_{c}^{TM} > V_{c}^{TE}$. This inequality implies that if a waveguide supports a TM mode of m-th order, the waveguide also supports a TE mode of the same order. The reciprocal situation does not apply in general.

(ii) For a symmetric waveguide ($a=0$), Eq. (2.30) and Eq. (2.32) yield $V_{c}^{TM} = V_{c}^{TE} = m \pi$.

This indicates that a symmetric planar waveguide always supports at least the fundamental mode $m=0$, both TE and TM polarized modes, regardless of the size (film thickness) or refractive indices of the guiding structure.

2.2.2.2 Radiation and leaky modes

Up to now we have examined the solution of the wave equation for planar waveguides in terms of guided modes, where the radiation is mainly confined only within the film, in the form of evanescent waves. In this case, the mode effective index was restricted between the refractive index of the film and that of the substrate. Nevertheless, the wave equation, for both TE and TM polarization light also admits solutions for effective indices lower than n_s. In this case, we are dealing with radiation modes, where the light is no longer confined to the film, but can “leak” to adjacent regions, losing the light power inside the film core as the wave propagates along the waveguide. For this reason, these types of solutions are often called leaky modes.

For effective refractive index values lower than n_s and higher than n_c (i.e. $n_c < N(n_s)$ or $k_o n_c < \beta(k_o n_s)$), the solutions in the film and substrate regions are in the
form of oscillatory functions, while the behavior of the fields in the cover region is in the form of exponential decay. This condition $\beta(k, n)$ corresponds to substrate radiation modes, where the light is not confined to the film region, but also spreads out to the substrate, as can be seen in Fig. 2.12. In addition, the solutions for these leaky substrate modes are not discrete, but instead the wave equation for substrate modes admits an infinite number of solutions for continuous propagation constant values β (or effective refractive index N).

![Substrate radiation mode](image)

Fig-2.12: Substrate radiation mode in an asymmetric step-index planar waveguide [1].

![Radiation mode](image)

Fig-2.13: Radiation mode in an asymmetric step-index planar waveguide [1]
Finally, if the modal effective refractive index N is lower than n_c ($N < n_c =\Rightarrow \beta < k_0 n_c$) the solution for the modal fields in the three regions is in the form of sinusoidal functions. In this case the field pattern corresponds to a radiation mode, where the light cannot be confined in the film but leaks to the cover and substrate regions, as can be seen in Fig. 2.13. Also, as in the case of substrate modes, there exist a continuous and infinite number of values for the propagation constant of radiation modes, with an infinite number of solutions for the electromagnetic field distribution.

2.2.3 Introduction to Numerical methods for approximate modal analysis
There are several numerical methods for modal characterization in optical waveguides which yield good results in general. However, we will describe here four widely used methods:

2.2.3.1 Effective Index Method (EIM)
Marcatili's method (Marcatili, 1969) [6] was extended by Knox and Toulios (1970) [7] who proposed the Effective Index Method (EIM), which soon after became one of the most popular methods for the analysis of optical waveguides. Unlike numerical methods, EIM is considered as semi-analytical methods, which make certain approximation to the structure under consideration and then solve the resulting simplified problem analytically. The popularity of the EI method is due to its simplicity, which comes from the fact that it reduces the three dimensional wave guide structures into an equivalent two-dimensional structure.

This method is one of the simplest approximate methods for obtaining the modal fields and the propagation constant analysis for calculating the propagation modes of channel waveguides. It applies the tools developed for planar waveguides to solve the problem of two-dimensional (2D) structures in channel waveguides having arbitrary geometry and index profiles. It consists of solving the problem in one dimension, described by the x coordinate, in such a way that the other coordinate (the y-coordinate) acts as a parameter. In this way, one obtains a y-dependent effective index profile; this generated index profile is treated once again as a one-dimensional problem from which the effective index of the propagating mode is finally obtained. The propagation
constants supported by a 2D channel waveguide having a refractive index profile which depends on two coordinates \(n = n(x, y) \) are then calculated by solving the propagation modes for two 1D planar waveguides. The EIM treats the channel waveguide as the superimposition of two 1D waveguides: planar waveguide-I confines light in the \(x \)-direction, while planar waveguide-II traps light in the \(y \)-direction [as shown in Fig.-2.14]. For propagating modes polarized mainly along the \(x \)-direction (\(E_x^{\pm} \)), where that the major field components are \(E_x, H_y \) and \(E_z \). The propagation of these polarized modes is similar to the TM modes in a 1D planar waveguide, and their solutions will correspond to the effective indices \(N_1 \). Further, the second planar waveguide (waveguide-II) is considered to be built from a guiding film of refractive index \(N_t \), which has previously been calculated. The modes for the second planar waveguide are TE polarized, with \(E_x, H_y \) and \(H_z \) as non-vanishing components, because the light is mainly polarized along the \(x \)-direction.

\[\begin{align*}
\text{(a) 3D Waveguide-I} \\
\text{(b) 2D Waveguide-I} \\
\text{(c) 2D Waveguide-II}
\end{align*} \]

Fig-2.14: Analytical model of effective index method for 3D waveguide geometry [8].
In the Fig-2.14, an analytical model of simple effective index method (SEIM) for three dimensional (3D) waveguide geometry has been shown, where

\[N_1 = \text{Effective refractive index of 2D waveguide-I} \]
\[n_s = n_c = \text{Refractive index of upper cladding and lower cladding} \]
\[n_{sub} = \text{Refractive index of substrate} \]
\[T = \text{Thickness of 2D waveguide-I and} \]
\[W = \text{Width of 2D waveguide-II} \]

The procedure for calculation of effective refractive index for 3D waveguide geometry can be summed up as follows [8],

(i) The two dimensional optical waveguide is replaced with a combination of two one dimensional optical waveguides.

(ii) For each one dimensional waveguide, the effective is calculated index along y-axis.

(iii) The waveguide is modeled by using the effective index calculated in step (2) along x-axis.

(iv) The effective index is to be obtained by solving the model in step-3 along x-axis.

In the analysis of optical waveguides, analytical methods such as Effective Index Method (EIM), Marcatili’s methods etc. are slightly less accurate than Finite Difference Time Domain (FDTD) and Beam Propagation Method (BPM) [9]. In spite of the lower accuracy, these methods have become popular waveguide design tools because of their simplicity, easier to use, requires lesser numerical calculations. The ability to convert a three dimensional problem in two dimensional one is the main feature and advantage of this method [8]. So we have tried to use this method in the study of mode propagation of our proposed planar waveguide based optical sensor in the proceeding chapters of the thesis.

2.2.3.2 Finite Element Method (FEM)

The finite-element method (FEM) uses a variational formulation for the solution of waveguide problems [9]. For dielectric waveguides, the usual approach is to use all three components of the H or the E vector. The advantage of using the three
components of the field is that no boundary conditions need to be set except at the exterior boundary. From Maxwell’s equations,

$$\nabla \times \varepsilon_{r}^{-1}(\nabla \times H) = k_{0}^{2} H$$

(2.36)

Taking the inner product of this equation with H^* leads to a functional of the form

$$F = \int_{S} [i(\nabla \times H)^{*} \cdot \varepsilon_{r}^{-1}(\nabla \times H) - k_{0}^{2} H \cdot H^{*}] dxdy$$

(2.37)

If the trial function coefficients are a_i, then requiring $\partial F/\partial a_i = 0$ provides the equations for the matrix eigenvalue problem. The trial functions must span the whole domain and satisfy the exterior boundary conditions, and this becomes difficult for arbitrary shapes. Thus, the finite-element method discretizes the domain into a set of adjoining triangles, and the trial functions are defined within each triangle with unknown coefficients. In the nodal element scheme, the trial functions are expressed in the non-orthogonal area coordinates ζ_i, and linear higher order trial functions in terms of the ζ_i can be used. Further, the integrations of the functional can be performed for each triangle before the matrix equation is assembled. The problem with the functional in (2.37) is that, spurious eigenvalue modal solutions occur. Furthermore, the formulation requires that β be specified, and the corresponding frequency ω in k_0 is obtained. Since the divergence equation has not been specifically set in this functional, inclusion of this equation in the functional with a summation parameter α mitigates this. While this approach does not eliminate the spurious modes, it pushes them to the higher order modes depending on the choice of α. Some check needs to be made to ensure that the spurious modes are eliminated from the solutions by running the code with different values of α. Using this technique, Rahman and Davies [10] have obtained results on a ridge guide that remain the benchmark against which all other methods are compared. This method has also been used by other groups [11] for modal solutions. An improvement on the three component field method was suggested by Cendes [12], in which the transverse fields are defined by edge elements and the longitudinal field is defined by the usual nodal elements. An edge element between the triangle vertices is defined by,

$$W_{g} = (\zeta_i \nabla \zeta_j - n_j \nabla \zeta_i) l_j$$

(2.38)
where \(\zeta_i \) is the area coordinate defined above and \(l_{ij} \) is the length of the edge between these vertices.

The result of this definition is that the edge element is a trial function that is along the edge \(ij \). The functional used here is given in (2.38), and the preferred field set is the components of \(E \). With this choice of trial functions, the spurious modes are eliminated. Use of second-order edge elements has given excellent results. Recent work in the finite-element area has focused on the use of edge elements.

2.2.3.3 Finite Difference Time Domain (FDTD) Method

The FDTD technique represents a widely used propagation solution technique in integrated optics, especially in photonic band gap device computations where the beam propagation solutions are inadequate, or cannot cope with the geometry. The major limitation is that the three-dimensional version requires large storage and extremely long computation times. The basic technique has been outlined in several papers and books devoted to the technique, for example, [13] and [14]. The solution of the wave propagation is by direct integration in the time domain of the Maxwell curl equations in discretized form. For example, the component of the curl equation is given by,

\[
\frac{\partial H_y}{\partial x} - \frac{\partial H_x}{\partial y} = \frac{\partial D_z}{\partial t}
\]

(2.39)

Discretizing via central differences in time and space gives,

\[
e^\varepsilon \left[\frac{E^{t+\Delta t}(x, y, z) - E^t(x, y, z)}{\Delta t} \right]
\]

\[
= \left[\frac{H_y^{t+\Delta t/2}(x + \Delta x / 2, y, z) - H_y^{t+\Delta t/2}(x - \Delta x / 2, y, z)}{\Delta x} \right]
\]

\[
- \left[\frac{H_x^{t+\Delta t/2}(x, y + \Delta y / 2, z) - H_x^{t+\Delta t/2}(x, y - \Delta y / 2, z)}{\Delta y} \right]
\]

(2.40)

The grid is staggered in time and space (the so-called Yee mesh following [15], and the equations for the other field components follow this form. With a given excitation at the
input either in CW or pulsed form, the excitation may be propagated through the structure by time stepping through the entire grid repeatedly. This first-order difference formulation is second-order accurate. In the interest of time and computational speed, most of the computations in the integrated optics area are in two dimensions. Higher order formulations are also available but the overhead that is carried slows down the marching algorithm, while improving accuracy for a specific grid size. The integrated form of the curl equations leads to a finite volume formulation. Again, a marching algorithm is developed on a split grid, as above. A recent two-dimensional alternative to the above first-order formulation, as applied to optical guides, is the higher order compact algorithm based on the split operator technique of Strang [16] and Shang [17]. In this approach, two fields, for example E_z and B_x are combined to define a Riemann time invariant variable, and the propagation of this variable uses the piecewise parabolic approximation suggested by Woodward and Colella [18]. Since the algorithm is two-dimensional the run times are smaller, and because of the parabolic approximation, higher order accuracy is obtained without the overhead of the higher order formulation.

2.2.3.4 Beam Propagation Method (BPM)

One of the fundamental aspects in integrated optics is the analysis and simulation of electromagnetic wave propagation in photonics devices based on waveguide geometries, including optical waveguides. The problem is to be solved such as for a given arbitrary distribution of refractive index $n(x, y, z)$, and for a given wave field distribution at the input plane at $z=0$, $E(x, y, z = 0)$, the spatial distribution of light $E(x, y, z)$ at a generic point z must be found. In this case, the distribution of the refractive index is known, which defines the optical circuit. When a light beam is injected at $z=0$, the problem is to determine the light intensity distribution at the exit, and in particular, what will be the output light intensity in each of the output branches.

The Beam Propagation Method (BPM) is useful to the study of light propagation in integrated photonics devices based on optical waveguides with the help of a paraxial form of the Helmholtz relation, known as the Fresnel equation. This relation is valid for paraxial propagation in slowly varying optical structures, which is the starting point to develop BPM algorithms.
The solution to the Helmholtz equation or the Fresnel equation applied to optical propagation in waveguides is known as the Beam Propagation Method (BPM) [19]. Two numerical schemes have been used to solve the Fresnel equation. In one numerical scheme, optical propagation is modeled as a plane wave spectrum in the spatial frequency domain, and the effect of the medium in homogeneity is interpreted as a correction of the phase in the spatial domain at each propagation step. The use of the fast Fourier techniques connects the spatial and spectral domains, and this method is therefore called Fast Fourier transform BPM (FFT-BPM). The propagation of EM waves in inhomogeneous media can also be described directly in the spatial domain by a finite difference (FD) scheme [19]. This technique allows the simulation of strong guiding structures, and also of structures that vary in the propagation direction. The beam propagation method which solves the paraxial form of the scalar wave equation in an inhomogeneous medium using the finite difference method is called finite difference BPM (FD-BPM). Also methods based on finite differences which solve the vector wave equation, called finite difference vector wave BPM (FDVBPM) have been developed. There is an intermediate approximation, which starts from the wave equation but ignores coupling terms between the transversal components of the fields, and for that reason this method is usually referred to as finite difference semi-vector BPM (FD-SVBPM).

The BPM is one of the commonly used numerical tools for modelling structures that are non uniform in propagation direction for time harmonic optical signals. Since the optical carrier frequency is usually very large compared to the signal bandwidth modelling with a monochromatic wave is sufficiently accurate for many devices. Commercialized computer aided design software (e.g. OptiWave, RSoft, BBV) based on this technique is available and their capabilities concerning wide angle problems, bidirectional propagation and anisotropy are steadily improved.

In this reported work, beam propagation method has been used for mode propagation in planar waveguide sensor and using optiBPM software (version 9.0) we have prepared the layout of the proposed waveguide sensor which is discussed in Chapter-3.
2.3 Optical sensor and its Classification

Since our proposed studies are related to optical sensor, it is essential to discuss the basic characteristics of optical sensor. The following characteristics of optical sensor make them advantageous over other types of sensors:

(i) Optical sensors are highly sensitive and accurate. Such sensors use an add-layer which has the ability to attract the analytes more effectively. This increases the sensitivity of a sensor to a particular analyte. Although other type of sensors such as electronic based sensors could also employ this technique, they traditionally suffer from a major problem of electromagnetic noise [20].

(ii) Fabricating an optical sensor is more cost-effective feasible than that of other existing optical sensors such as waveguide sensor which can be easily integrated on to a chip [21].

(iii) Multichannel sensing can be done by optical sensors due to its compactness [22] [23]. Microfluidic channels are also one of the current developments in the industry where analytes can be flown in the fluids and due to the shift in the resonant wavelength of the analytes, sensing becomes a possibility [24].

(iv) Another attractive application of optical sensor is its compatibility with fiber optic technology. This integration helps in the reduction of problems dealt with optical inputs and outputs by not integrating them as separate light sources [22]-[25].

(v) The response time in an optical sensor is much shorter compared to that of other existing sensors [26].

(vi) Optical sensors are highly immune to electromagnetic disturbances.

Optical sensors can be classified based on their sensing mechanisms and architectures. Fluorescence, Surface Plasmon Resonance (SPR), Raman scattering, absorption change, photon migration spectroscopy and change in effective index are a few of the sensing mechanisms that optical sensors follow [20]. Interferometer, Anti Resonant Reflecting Optical Waveguides (ARROW), hollow waveguides, Bragg gratings, slot waveguides, ring resonator, photonic crystals, meta materials and Low Optical Overlap Mode (LOOM) structures are examples of the various architectures that
optical waveguides employ [20]-[26]. There are mainly two types of optical sensor—optical fiber sensor and planar waveguide sensors as shown in the following Fig. 2.15.

![Fig-2.15: Classification of optical sensors](image)

Recently, optical waveguide sensors are preferred for different applications due to higher sensing region in its compact size in comparison to optical fiber sensors.

2.3.1 Fiber Optic (FO) sensors and classification

Fiber optic sensors are excellent candidates for monitoring environmental changes and they offer many advantages over conventional electronic sensors as listed below:

- Easy integration into a wide variety of structures, including composite materials, with little interference due to their small size and cylindrical geometry.
- Inability to conduct electric current.
- Immune to Electromagnetic Interference (E.I) and Radio Frequency (R.F) interference.
- Lightweight.
- High sensitivity.
- Multifunctional sensing capabilities such as strain, pressure, corrosion, temperature and acoustic signals.

To date, fiber optic sensors have been widely used to monitor a wide range of environmental parameters such as position, vibration, strain, temperature, humidity, viscosity, chemicals, pressure, current, electric field and several other environmental factors [27] [28]. The basic structure of optical fiber is shown in Fig. 2.16, whereas the general block diagram of fiber optics sensor is shown in Fig. 2.17.

![Basic structure of an optical fiber](image)

Fig-2.16: Basic structure of an optical fiber [29]

Fig. 2.17 shows a schematic diagram of a fiber-optical sensor system consist of an optical source (laser, LED, laser diode, etc.), optical fiber, sensing or modulator element transducing the measurand to an optical signal, an optical detector and processing electronics (oscilloscope, optical spectrum analyzer, etc.) [30].

![Basic components of an optical fiber sensor system](image)

Fig-2.17: Basic components of an optical fiber sensor system [29]
Fiber-optical sensors are divided into two basic classes referred to as intrinsic, or all-fiber and extrinsic, or hybrid sensors. The intrinsic fiber-optical sensor has a sensing region within the fiber and light never goes out of the fiber. In extrinsic sensors, light has to leave the fiber and reach the sensing region outside, and then comes back to the fiber [31]. Furthermore, fiber-optical sensors can also be classified under three categories [30]: the sensing location, the operating principle and the application, as shown in Table 2.1.

Table 2.1: Fiber optical sensor classifications based on three characteristics

<table>
<thead>
<tr>
<th>Category</th>
<th>Class</th>
<th>Trait</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensing location</td>
<td>Point sensors</td>
<td>With a sensitized tip in the measurand field</td>
</tr>
<tr>
<td></td>
<td>Distributed Sensors</td>
<td>To measure along the length of the fiber itself</td>
</tr>
<tr>
<td></td>
<td>Quasi-distributed Sensors</td>
<td>“in between” point and distributed sensors</td>
</tr>
<tr>
<td>Operating Principle</td>
<td>Intensity sensors</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Phase sensors</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Frequency sensors</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Polarization sensors</td>
<td>-</td>
</tr>
<tr>
<td>Application</td>
<td>Physical sensors</td>
<td>For temperature, stress, velocity etc.</td>
</tr>
<tr>
<td></td>
<td>Chemical sensors</td>
<td>For pH, gas analysis, spectroscopic studies, etc</td>
</tr>
<tr>
<td></td>
<td>Biomedical sensors</td>
<td>For blood flow, glucose content etc</td>
</tr>
</tbody>
</table>

On the basis of sensing location, there are three types of fiber optical sensor- point sensor, distributed sensor and quasi-distributed sensors in which both point and distributed sensing location are used for the measurement. Based on the operating principal and demodulation technique, a fiber optic sensor can be further divided into intensity, phase, frequency or polarization sensor. Based on the application, a fiber optic sensor can be classified as follows:

- Physical sensors: Used to measure physical properties like temperature, stress, etc.
- Chemical sensors: Used for pH measurement, gas analysis, spectroscopic studies, etc.
Bio-medical sensors: Used in bio-medical applications like measurement of blood flow, glucose content etc.

2.3.1.1 Intensity Based Fiber Optic Sensor
Intensity-based fiber optic sensors rely on signal undergoing some loss. They are made by using an apparatus to convert what is being measured into a force that bends the fiber and causes attenuation of the signal. Other ways to attenuate the signal is through absorption or scattering of a target. The intensity-based sensor requires more light and therefore usually uses multimode large core fibers [32]. The advantages of these sensors are: simplicity of implementation, low cost, possibility of being multiplexed, and ability to perform as real distributed sensors. The disadvantages are: relative measurements and variations in the intensity of the light source may lead to false readings, unless a referencing system is used [33].

One of the intensity-based sensors is the micro-bend sensor, which is based on the principle that mechanical periodic micro bends can cause the energy of the guided modes to be coupled to the radiation modes and consequently resulting in attenuation of the transmitted light. As seen in Fig. 2.18, the sensor is comprised of two grooved plates and between them an optical fiber passes. The upper plate can move in response to pressure. When the bend radius of the fiber exceeds the critical angle necessary to confine the light to the core area, light starts leaking into the cladding resulting in an intensity modulation [34].

![Fig-2.18: Intrinsic fiber optic sensor [29].](image-url)
Another type of intensity based fiber optic sensor is the evanescent wave sensor (see Fig. 2.19) that utilizes the light energy which leaks from the core into the cladding. These sensors are widely used as chemical sensors. The sensing is accomplished by stripping the cladding from a section of the fiber and using a light source having a wavelength that can be absorbed by the chemical that is to be detected. The resulting change in light intensity is a measure of the chemical concentration. Measurements can also be performed in a similar method by replacing the cladding with a material such as an organic dye whose optical properties can be changed by the chemical under investigation [35].

2.3.1.2 Wavelength Modulated Fiber Optic Sensors

Wavelength modulated sensors use changes in the wavelength of light for detection. Fluorescence sensors, black body sensors, and the Bragg grating sensor are examples of wavelength-modulated sensors. Fluorescent based fiber sensors are being widely used for medical applications, chemical sensing and physical parameter measurements such as temperature, viscosity and humidity. Different configurations are used for these sensors where two of the most common ones are shown in Fig. 2.20. In the case of the end tip sensor, light propagates down the fiber to a probe of fluorescent material. The

Fig-2.19: Evanescent wave fiber optic chemical sensor [29].
The resultant fluorescent signal is captured by the same fiber and directed back to an output demodulator [36].

![Fluorescent fiber optic sensor probe](image)

Fig-2.20: Fluorescent fiber optic sensor probe [29].

The most widely used wavelength based sensor is the Bragg grating sensor. Fiber Bragg gratings (FBGs) are formed by constructing periodic changes in index of refraction in the core of a single mode optical fiber. This periodic change in index of refraction is normally created by exposing the fiber core to an intense interference pattern of UV energy. The variation in refractive index so produced, forms an interference pattern which acts as a grating.

![Bragg grating response](image)

Fig-2.21: Bragg grating response [29], where λ_B = Bragg wavelength and Λ = grating period respectively.
The Bragg grating sensor operation is shown in Fig. 2.21 where light from a broadband source (LED) whose center wavelength is close to the Bragg wavelength is launched into the fiber. The light propagates through the grating, and part of the signal is reflected at the Bragg wavelength. The complimentary part of the process shows a small sliver of signal removed from the transmitted signal. This obviously shows the Bragg grating to be an effective optical filter [32].

2.3.1.3 Phase Modulated Fiber Optics Sensors

Phase modulated sensors use changes in the phase of light for detection. The optical phase of the light passing through the fiber is modulated by the field to be detected. This phase modulation is then detected interferometrically, by comparing the phase of the light in the signal fiber to that in a reference fiber. In an interferometer, the light is split into two beams, where one beam is exposed to the sensing environment and undergoes a phase shift and the other is isolated from the sensing environment and is used for as a reference. Once the beams are recombined, they interfere with each other [37]. Mach-Zehnder, Michelson, Fabry-Perot, Sagnac, polarimetric, and grating interferometers are the most commonly used interferometers. The Michelson and Mach-Zehnder interferometers are shown in Fig. 2.22 (a) and Fig. 2.22 (b) respectively.

![Fig-2.22: Schematic diagrams of (a) Michelson interferometer and (b) Mach-Zehnder interferometer [29].](image-url)
There are similarities and differences between the Michelson and Mach–Zehnder interferometers. In terms of similarities, the Michelson is often considered to be folded Mach–Zehnder, and vice versa. Michelson configuration requires only one optical fiber coupler. Because the light passes both through the sensing and reference fibers twice, the optical phase shift per unit length of fiber is doubled. Thus, the Michelson can intrinsically have better sensitivity. Another clear advantage of the Michelson is that the sensor can be interrogated with only a single fiber between the source-detector module and the sensor. However, a good-quality reflection mirror is required for the Michelson interferometer [27].

2.3.1.4 Polarization Modulated Fiber Optic Sensors

The direction of the polarization of the electric filed of the light field is defined as the polarization state of the light field. There are different polarization states of the light field- linear, elliptical, and circular polarization states. For the linear polarization state, the direction of the electric field always keeps in the same line during the light propagation.

![Polarization-based fiber optic sensor](image)

Fig-2.23: Polarization-based fiber optic sensor [29].

For the elliptical polarization state, the direction of the electric field changes during the light propagation. The end of the electric field vector forms an elliptical shape; hence, it is called “elliptical polarized light”. The refractive index of a fiber changes when it undergoes stress or strain. Thus, there is an induced phase difference between different polarization directions. This phenomenon is called photoelastic effect.
Moreover, the refractive index of a fiber undergoing a certain stress or strain is called induced refractive index. The induced refractive index changes with the direction of applied stress or strain. Thus, there is an induced phase difference between different polarization directions. In other words, under the external perturbation, such as stress or strain, the optical fiber works like a linear retarder. Therefore, by detecting the change in the output polarization state, the external perturbation can be sensed [27].

Fig. 2.23 shows the optical setup for the polarization based fiber optic sensor. It is formed by polarizing the light from a light source via a polarizer that could be a length of polarization-preserving fiber. The polarized light is launched at 45 degrees to the preferred axes of a length of bi-refrangent polarization-preserving fiber. This section of fiber is served as sensing fiber. Under external perturbation such as stress or strain, the phase difference between two polarization states is changed. Then, the output polarization state is changed according to the perturbation. Hence, by analyzing the output polarization state at the exit end of the fiber, the external perturbation can be detected [27].

2.3.2 Integrated Optic Waveguide Sensors
The basic principles of planar waveguide sensors are same as that for the fiber optic sensors. The two fields have been developed at different paces and with slight different targets. Fibers have the unique capability of operating over extended gauge lengths (even km!) in either point sensing or distributed sensing format. In the former case, the FOS is configured in such a way that monitoring of the measurand occurs at a specified location along the fiber; in the latter case, light is guided by confining it in optical structures known as waveguides by utilizing the Total Internal Reflection principle.

<table>
<thead>
<tr>
<th>Light confinement dimensions</th>
<th>Type of waveguide</th>
</tr>
</thead>
<tbody>
<tr>
<td>1D</td>
<td>Planar waveguides</td>
</tr>
<tr>
<td>2D</td>
<td>Channel waveguides</td>
</tr>
<tr>
<td>3D</td>
<td>Photonic crystals</td>
</tr>
</tbody>
</table>
Light is confined within the waveguide along the dimensions of 1D, 2D or 3D. So planar waveguide can be classify based on the dimensions of the light that is confined as- planar waveguides (1-D), channel waveguides (2-D) and photonic crystals (3-D) respectively as shown in the Table 2.2.

Channel waveguides known as 2D waveguides are those which have a higher refractive index in the core when compared to substrate and cover. In this type of structure, the Total Internal Reflection (TIR) takes place at the interfaces and also at the lateral boundaries. The refractive index of the core region is always maintained more than the refractive indices of surrounding regions. The channel waveguides can be classified in a similar manner to planar waveguides in terms of step index or graded index or symmetric/asymmetric except that we have to consider the addition of one extra dimension. Three main types of channel waveguides have been in use namely stripe waveguide, ridge waveguide and buried waveguide respectively.

Integrated Optic (IO) planar waveguides can be fabricated with a variety of materials such as SiON/SiO₂, GeO₂-SiO₂/SiO₂, GaAsInP/InP, Ti: LiNbO₃, SOI and polymers. Its greater advantage is that it permits flexibility both in design and manufacturing by exploiting the combination of thin films technology with other planar waveguide technologies, such as surface acousto-optic interaction, laser writing, silicon micromachining, microelectro-mechanical systems (MEMS), optoelectronic integration on a semiconductor substrate etc. Since IOSs as a temperature and a displacement sensor, were first reported in 1982 [38][39], afterwards many other integrated optical devices for sensing application have been proposed and demonstrated [40]-[42]. The detail of integrated optic planar waveguide sensor is discussed in the subsequent section 2.3.2.1. In the following sections, some examples of IOSs are very briefly presented and discussed.

2.3.2.1 Integrated Optical Interferometers

Mach-Zehnder Interferometers (MZI) based on integrated optics are easily fabricated, by means of standard integrated circuit (IC) technologies and are one of the most common structures exploited for the detection of the phase shift induced by a measurand. The schematic structure of an integrated optical MZI is shown in Fig.-
2.24(a), and the field distribution in the waveguide (and the interacting evanescent field) is sketched in Fig. 2.24(b). Several sensing devices have been demonstrated, e.g. for the detection of displacement, for refractometry and for bio-sensing [43] [44].

![Image of MZI structure and modal field distribution](image)

Fig-2.24: a) Top-view of an IO MZI structure and b) Behavior of the modal field distribution in the waveguide structure [44].

2.3.2.2 Grating-Coupler Sensors

In integrated optics, the light is launched into the thin-film waveguide by prism coupling, grating coupling, or fiber-to-waveguide butt-coupling [45]. The prism-coupling is the most common technique in the laboratory, whereas grating couplers can be fabricated directly on top or inside the waveguide itself, offers a more robust mechanism for practical application. Grating couplers, however, are not simply another way of performing the access function to/from an optical waveguide. As their operation depends critically on the refractive indices of the guiding film and of surrounding media (once the wavelength is fixed), the precise measurement of the in-coupling angle constitutes a sensitive tool to detect changes in refractive index or wavelength induced by a measurand [46]. Commercial grating coupler sensor chips are available. The cladding layer modifies the optical, chemical or biochemical properties of the surface of the chip. A wide choice of coatings, from thin films of SiO₂, TiO₂, TaO₂, ITO (Indium Tin Oxide), ZrO₂, to thick films of PTFE, silicone etc., are used. The biosensing application of grating coupler sensors include adsorption of protein at surface, immunosensing, drug screening, analysis of association and dissociation kinetics, and
many more. Typical size of the chip is 48 mm (length) x 16 mm (width) x 0.55 mm (thickness), and the guiding sol-gel layer has thickness in the range 170 to 220 nm; grating area is 2 mm (L) x 16 mm (W), its depth (the grating is a surface relief structure) is about 20 nm, and its pitch is ≈ 0.4 µm.

2.3.2.3 Evanescent-Wave and Surface Plasmon Resonance Sensors

The origin of the evanescent wave may be explained as follows: When light propagates in an optical fiber or waveguide, a fraction of the radiation extends a short distance from the guiding region into the medium of lower refractive index which surrounds it. This evanescent wave which decays exponentially with distance from the waveguide interface, defines a short sensing volume within which the evanescent energy may interact with molecular species. Recently, optical waveguide sensors based on such evanescent wave (EW) interactions have attracted significant research interest [47][48].

The motivation for adopting the EW approach derives from a number of advantages offered by the technique in particular applications:

(i) Because the interrogating light remains guided, no coupling optics is required in the sensing region and an all fiber approach is feasible. Furthermore, considerable miniaturization is possible for which EW interactions are predominant sensing mechanisms.

(ii) The technique can provide enhanced sensitivity over conventional bulk optics approaches.

(iii) In contrast to other sensing methods, EW approach affords the sensor designer greater control over interaction parameters such as interaction length, sensing volume and response time.

The control over the degree of penetration of the EW into the low index medium is characterized by the penetration depth \(d_p \), which is the perpendicular distance from the interface at which the electric field amplitude, \(E \) has fallen to 1/e of its value, \(E_0 \) at the interface i.e.

\[
E = E_0 \exp(-z/d_p)
\]

(2.41)
The magnitude of the penetration depth is given by:

\[d_p = \frac{\lambda}{2\pi n_1 \left(\sin^2 \theta - \left(\frac{n_2}{n_1} \right)^2 \right)^{3/2}} \]

(2.42)

where \(\lambda \) is the vacuum length, \(\theta \) is the angle of incidence to the normal at the interface and \(n_1, n_2 \) are the refractive index values of the dense and rare media, respectively. Although \(d_p \) is less than \(\lambda \), it is clear from Eq. (2.42) that its value rises sharply as the angle of incidence approaches the critical angle, \(\theta_c = \sin^{-1} \left(\frac{n_2}{n_1} \right) \). This eq. (2.42) highlights the importance of the interface angle \(\theta \) in the design of EW sensors.

Fig. 2.25: Evanescent wave sensor [49].

Fig. 2.25 depicts a typical sensor which employs the evanescent sensing technique. When the total internal reflection occurs at an angle bigger than the critical angle, the evanescent field decays exponentially. In the structure, Silicon is used as the substrate material. A sensitive material is used on top of the waveguide material called as an ad-layer to help attract analytes easily and effectively. This increases the sensitivity.

Fig. 2.26(a) depicts the angle of the incident light being less than the critical angle. Fig. 2.26(b) depicts the incident angle equal to the critical angle. For total internal
reflection, the angle of the incident ray must be greater than the critical angle, which is depicted by Fig. 2.26(c).

![Fig-2.26: Formation of evanescent wave (based on [50])](image)

Thus, the evanescent wave is formed and it penetrates into the region of lower refractive index. The species to be detected are made to interact with the evanescent field that penetrates into the cladding region. Strong evanescent wave absorption occurs when the peak absorbance wavelength of the analytes equals the wavelength of the light that is propagated [50]-[52]. Further criteria about the material selection are discussed later in this chapter.

![Fig-2.27: Penetration depth (based on [50])](image)

Fig. 2.27 shows the phenomenon of evanescent wave sensing along with the determination of the penetration depth. A ray of light is incident upon the reflecting
plane with an angle \(\theta \), whereas \(n_2 \) is the refractive index of the cladding which is air. \(n_1 \) is the refractive index of the core region. According to the principle of total internal reflection, \(n_1 \) is greater than \(n_2 \). This penetration depth can be measured using Eq. (2.43) if we have the knowledge of operating wavelength and refractive indices of core and cladding regions.

The penetration depth of electric field in the region can also be determined as [53][54],

\[
\delta = \left(\frac{\lambda}{2\pi} \right)^2 \left(N^2 - n_c^2 \right)^{1/2}
\]

(2.43)

where \(\delta \)– penetration depth which determines the exponential decay of the electric field

\(\lambda \)– wavelength of operation

\(N \)– effective refractive index of the core and

\(n_c \)–refractive index of the cladding region

Fig. 2.25 shows the basic principle of an evanescent wave sensor. In the sensing region, the testing sample (measurand) acts as cladding region and hence the evanescent light wave propagation depends on measurand which interact with evanescent waves. The change in a chemical or physical parameter of the cladding or sensing region (usually constituted by a fluid or an ultra-thin transducer film) is converted into an optically measurable quantity by means of a change in absorption of the guided wave or in its effective index [47]. Such sensing structure relies on measurand induced changes of the field profile of the guided mode; this is in contrast to the the refractive IO-sensors in which the changes of the effective refractive index \(n_{eff} \) are exploited [55].

The technique which is becoming a key tool for characterizing biomolecular interaction is that based on Surface Plasmon Resonance (SPR) [56]. The optical excitation of surface Plasmon by the method of Attenuated Total Reflection (ATR) was demonstrated in the late Sixties, and very soon it was applied for characterization of metal thin films [57]. In early Eighties the use of SPR for gas sensing and biosensing was demonstrated [59][60] and since then SPR sensor technology has continued to grow up [61] and it is now commercialized.
2.3.3 Basic Principle: Optical Planar Waveguide Sensors

Although trapped within the dielectric medium of the optical waveguide, the radiation that propagates inside the waveguide can be perturbed by the external environment, and this perturbation can be used to draw useful information for sensing purposes. In fact, the interaction of the parameter of interest that is the measurand with the waveguide produces a modulation in the propagation constants of the guided light beam. That modulation represents the sensitive function of the measurand of interest.

![Diagram of waveguide sensor](image)

Fig-2.28: The waveguide sensor: general working principle [44].

As shown in Fig.2.28, the basic elements constituting a guided wave sensor are: an optical source, an optical interface for source-to-waveguide light coupling, the waveguide itself where the measurand induced light modulation occurs, a photo detector and the electronics for amplification, signal processing and data display. In accordance to the optical parameter, which is modulated by the measurand, waveguide sensors can be divided into four basic categories:
Phase-modulated,
- Polarisation-modulated,
- Wavelength-modulated,
- Intensity-modulated.

Waveguide sensors are further subdivided as intrinsic, extrinsic, or evanescent-wave sensors. Intrinsic sensors are true waveguide sensors in which the sensing element is the waveguide itself. Extrinsic sensors make use of an optical transducer coupled to waveguide, the optical constants of which are modulated by the measurand. Evanescent-wave sensors are hybrid intrinsic/extrinsic sensors, since measurand-induced modulation occurs in the waveguide itself, in most cases because of the presence of a measurand-sensitive cladding section.

2.3.3.1 Integrated Optic Planar Waveguide Sensor Effect
The integrated optic planar waveguide sensors make use of guided waves or modes in optical waveguides; in particular of the orthogonally polarized TEo and TMo modes of high refractive index. The modes in planar optical waveguides are TE_m (transverse electric or s-polarized) modes and TM_m (transverse magnetic or p-polarized) modes, where m = 0, 1, ... is the mode number. In sensor applications, it is seen that the effective refractive index N is the most important physical quantity of the guided modes. The modes propagate down the waveguide with the phase velocity \(v_p = \frac{c}{N} \), where c is the velocity of light in vacuum and N is the effective refractive index of the mode; N depends on polarization (TE or TM), mode number m, wavelength \(\lambda \), the properties of the wave guiding film F, i.e., its thickness d_F in units of \(\lambda \) and its refractive index n_F, and on the refractive indices n_s and n_c respectively, of the substrate S and of the medium C covering the waveguide (as shown in Fig.2.29). The field of a guided wave penetrates as an evanescent wave traverses a small distance \(\Delta z_c \) into the medium C, which in sensor applications is the sample covering the waveguide. More precisely, the evanescent field decays exponentially proportional to \(\exp(-z/\Delta z_c) \) with distance z from the waveguide surface, where

\[
\Delta z_c = \left(\frac{\lambda}{2 \pi} \right) \left[N^2 - n_c^2 \right]^{\frac{1}{2}}
\]

(2.44)
is the penetration depth. The basic IO sensor effect is caused by interaction of the
evanescent wave of the guided mode with the sample. The evanescent field 'senses' changes in the refractive-index distribution near the waveguide surface. Thus changes ΔN in the effective refractive indices of the guided modes are induced. This is the basic or primary IO sensor effect on which all IO sensors are based.

Fig-2.29: Basic IO sensor effect. Changes ΔN of the effective refractive index N of a guided mode are induced by changes of the refractive-index distribution n(z) in the vicinity of the waveguide surface, i.e., within the penetration depth Δz_c of the evanescent field in the sample C. Sensor effect (1): molecules transported by convection or diffusion adsorb on the surface forming an adlayer F' of thickness d_{F'} and refractive index n_{F'}. Sensor effect (2): homogeneous change Δn_c of refractive index of (liquid) sample C [54].

The effective refractive-index changes (ΔN) can be induced by two different effects as follows:

i. the formation of an adlayer F' of adsorbed or bound molecules, which are transported by convection or diffusion from the bulk of the gaseous or liquid sample C to the waveguide surface. This adlayer is modeled as a homogeneous layer F' of thickness d_F and refractive index n_F.
ii. changes Δn_c of the refractive index n_c of the homogeneous (liquid) sample C covering the waveguide surface. Only in the case of microporous waveguides, iii. a third sensor effect can occur, namely the adsorption or desorption of molecules in pores of the wave guiding film F itself, which primarily changes its refractive index n_F by Δn_F and in turn leads to an effective refractive-index change ΔN.

The field distribution inside the waveguide F itself, and not the evanescent field in C, is responsible for effect (iii). If all the effects (1)-(3) are simultaneously present, the resulting effective refractive-index changes are:

$$\Delta N = \left(\frac{\partial N}{\partial d_F} \right) d_F + \left(\frac{\partial N}{\partial n_c} \right) \Delta n_c + \left(\frac{\partial N}{\partial n_F} \right) \Delta n_F$$ \hspace{1cm} (2.45)

How the sensitivity constants $\left(\frac{\partial N}{\partial d_F} \right)$, $\left(\frac{\partial N}{\partial n_c} \right)$ and $\left(\frac{\partial N}{\partial n_F} \right)$ depend on the optical parameters of the waveguide F, substrate S and sample C. Effect (1) makes it possible to monitor in real time the adsorption of molecules on the waveguide surface or their desorption from the surface, respectively. Effect (ii) is the basis for the application of IO sensors as differential refractometer. Effects (i) and (ii) are also the basis of (bio)chemical sensors. Effect (3) can be exploited in relative-humidity sensing and in gas sensing. In other cases, such as in refractometry and in affinity sensing, effect (3) can be rather disturbing and compact waveguides with very low microporosity are preferable.

As expressed in Eq. (2.45), the effects (i)-(iii) contribute additively to the effective refractive-index changes ΔN. In order to differentiate between the two or three different effects, it is therefore necessary to measure the effective refractive-index changes of the corresponding number of guided modes at the same wavelength λ. The optical sensitivity constants: $\left(\frac{\partial N}{\partial d_F} \right)$, $\left(\frac{\partial N}{\partial n_c} \right)$, and $\left(\frac{\partial N}{\partial d_F} \right)$ introduced in Eq. (2.45) are the differential changes in effective refractive index of a guided mode for a small change in:

(i) the thickness d_F of an adsorbed or bound adlayer F;
(ii) the refractive index n_c of the (liquid) sample;
The optical sensitivity constants have been calculated using two independent methods. The first method [62] [63] starts from the exact mode guiding condition for a planar two-layer waveguide consisting of the wave guiding film F (of thickness \(d_F \) and refractive index \(n_F \)) with an adsorbed or bound adlayer F' (of arbitrary thickness \(d_{F'} \), and refractive index \(n_{F'} \)), sandwiched between the substrate S and the sample C of refractive indices \(n_S \) and \(n_C \), respectively. The limit of very thin adlayers F' considers as \(d_{F'} \ll \lambda \).

The second method [64] is a perturbation theoretical approach applied to a planar waveguide with any transverse refractive-index distribution. Both methods gave the same results for single-layer step-index waveguides. However, the perturbational approach gives more physical insight, in that the basic formula shows the relation between the effective refractive-index changes \(\Delta N\) of the guided mode and the changes in refractive index in the vicinity of the waveguide surface (within a layer of the order of the penetration depth \(\Delta z_e\)) that are 'probed' by the evanescent field of the guided mode. For the TE modes, we have

\[
(\Delta N)^2 = \frac{\int \Delta \varepsilon(z)[u(z)]^2 \, dz}{\int [u(z)]^2 \, dz} \tag{2.46}
\]

where \(u(z)\) is the transverse electric-field distribution of the unperturbed guided mode as a function of the coordinate \(z\) perpendicular to the planar waveguide. \(\Delta \varepsilon(z) = 2n(z)\Delta n(z)\) is the change in dielectric permittivity, \(\varepsilon(z)\) and the change in refractive-index distribution \(\Delta n(z)\). For TM modes, for the corresponding formula also can be derived [54]. The main results are:

(i) The optical sensitivity constants depend on the polarization (TE or TM) of the mode, the mode number \(m\) (\(m = 0, 1, \ldots\)), the waveguide thickness \(dF/\lambda\) in units of \(\lambda\), and on the refractive indices \(n_S, n_F\) and \(n_C\).

(ii) From Eq.(2.46) we conclude that a high field strength of the 'probing' evanescent field (in the numerator of Eq. (2.46)) for a given power of the guided wave (which is proportional to the denominator in Eq. (2.46)) or in other words, a
strong confinement of the transverse field distribution of the guided wave yields high sensitivity constants \(\frac{\partial n}{\partial d_F} \) and \(\frac{\partial n}{\partial n_c} \).

Both constants are inversely proportional to the so-called effective waveguide thickness \(d_{\text{eff}} \), which for TE waves is the sum of the waveguide thickness \(d_F \) and the penetration depths \(\Delta z_c \) and \(\Delta z_s \) of the evanescent fields into sample C and substrate S.

i.e., \(d_{\text{eff}} = d_F + \Delta z_c + \Delta z_s \)

Therefore, to obtain high sensitivities \(\frac{\partial n}{\partial d_F} \) and \(\frac{\partial n}{\partial n_c} \), very thin waveguide films \(F \) have to be used. But for a mode to be guided in a planar waveguide, the waveguide film \(F \) must have a thickness \(d_F \) somewhat larger than the minimum or cut-off thickness which depends on the mode number \(m = 0, 1 \ldots \) and on the polarization with \(p = 0 \) and \(1 \) for TE mode and TM mode respectively. From Eq. (2.47) we learn that waveguides with cut-off thicknesses \((d_F)^p \) of the TE\(_0\) and TM\(_0\) modes much smaller than the wavelength \(\lambda \) can only be realized if the difference \((n_F - n_0) \) between the refractive indices of the waveguide film \(F \) and the substrate \(S \) is large, e.g., \((n_F - n_0) \geq 0.3 \). The consequence is that with very thin high-refractive-index films \(F \) on glass or silica substrates high optical sensitivity constants \(\frac{\partial N}{\partial d_F} \) can be obtained. Such very thin waveguides were originally of no importance in the past, because IO components were only of interest for optical communication purposes and for fibre sensors, and therefore, they had to be compatible with monomode fibers. In order to achieve low coupling losses between IO components and fibers, the waveguide thicknesses or mode diameters have to be matched to the core diameter (typically about 5-10 \(\mu \)m) of monomode fibers. (Planar) waveguides satisfying these requirements, such as waveguides fabricated by diffusion processes just below the surfaces of either glasses or electro-optic crystals such as

\[(d_F)^p_m = \frac{1}{2} \lambda (n_F^2 - n_0^2) \left[\frac{1}{2} \right] \times \left[m + \pi^{-1} \arctan \left(\frac{n_F}{n_c} \right) \right] \left\{ \left[\frac{n_F}{n_c} \right] \right\} \left((n_F - n_0) \geq 0.3 \right) \] (2.47)
LiNbO₃, have very low optical sensor sensitivities; the sensitivity constant \(\frac{\partial N}{\partial d_F} \) is one to two orders lower than for very thin high-refractive-index films. This dependence of the optical sensitivity constants on waveguide parameters has some bearing on the history of the basic IO sensor effect. This effect was discovered, by serendipity. The original object of the work [65] was actually to find out whether or not grating couplers could be fabricated on dip-coated SiO₂-TiO₂ waveguides (produced by a sol-gel process) on glass substrates by embossing at room temperature a surface relief grating with submicron grating constant \(\Lambda \) into the gel films, which were subsequently 'fired' at temperatures of about 500 °C to become hard amorphous films. Since sol-gel films shrink considerably in depth (by a factor of typically three to four) [66], the eventual success of this new method to fabricate surface relief gratings with \(1/\Lambda = 1200-3600 \) lines per mm was not guaranteed from the outset. But very shallow surface relief gratings (with a modulation depth of several to a few tens of nanometer) are fortunately well suited as grating couplers, having coupling lengths of the order of millimeters.

When these SiO₂-TiO₂ waveguides provided with surface relief gratings were used for in-coupling experiments with red He-Ne laser light, the unexpected and surprising finding was that the intensity of the light coupled into the waveguide at a constant angle of incidence \(\alpha \) was not constant in time as is to be expected from the in-coupling condition but varied erratically; expressed differently, the optimum in-coupling angle \(\alpha_i(t) \) varied, which corresponds to a time-dependent effective refractive-index change \(\Delta N(t) \). Soon it was found that the effect was caused by variations of the relative humidity in the environment of the coupler grating on the waveguide. This first IO sensor experiment was reported at the European Conference on Integrated Optics held in Florence in 1983 [67]. Nowadays, this experiment is routinely performed to demonstrate the basic IO sensor effect. (The sensitivity of the SiO₂-TiO₂ waveguides with respect to relative-humidity changes is greatly enhanced by their microporosity; in highly porous waveguides, the sensor effect (3) can even be predominant [68]-[70]. In Fig. 2.26 we present optical sensitivity constants versus waveguide thickness \(d_F \) calculated for two different high-index wave guiding films F, i.e., waveguides of type (a) with \(n_F=1.8 \) and \(n_e=1.47 \) and waveguides of types (b) with \(n_F=2.01 \) and \(n_e=1.46 \).
Waveguides of type (a) correspond to the SiO$_2$-TiO$_2$ films, while waveguides of type (b) can be realized with films of higher TiO$_2$ contents or of Si$_3$N$_4$. The substrates S are glass, silica or oxidized silicon wafers (Si/SiO$_2$).

![Graph](image1)

(a)

![Graph](image2)

(b)

Fig-2.30: Calculated sensitivities $\frac{\partial N}{\partial d_F}$, $\frac{\partial N_{TM_0}}{\partial d_F}$ for TE$_0$ and TM$_0$ modes, and sensitivity $-\frac{\partial \tilde{N}}{\partial d_F}$ of difference interferometer vs. waveguide thickness d_F for adsorption of H$_2$O molecules from a gaseous sample, where $\tilde{N} = N_{TE_0} - N_{TM_0}$, $n_c=1$, $n_1=1.33$, $\lambda = 633$ nm. Top, waveguide of type (a) with parameters $n_p=1.80$ and $n_s=1.47$; bottom, waveguide of type (b) with parameters $n_p=2.01$ and $n_s=1.46$ [54].
Fig. 2.30 shows the sensitivity constant \(\frac{\partial N}{\partial d_F} \), for the adsorption of water on the waveguide surface. For waveguides of type (a) the thickness range \(d_F = 130 - 200 \text{ nm} \) yields the highest sensitivities. Adsorption of one H2O monolayer of thickness, \(d_F = 0.3 \text{ nm} \) on these waveguides induces maximum effective refractive-index changes \(\Delta N \sim (1.2-1.5) \times 10^{-4} \) for TE\(_0\) and TM\(_0\) modes.

![Graph](image1)

![Graph](image2)

(a) \hspace{1cm} (b)

Fig-2.31: Calculated sensitivities \(\frac{\partial N_{TE_0}}{\partial n_c}, \frac{\partial N_{TM_0}}{\partial n_c} \) for TE\(_0\) and TM\(_0\) modes, and sensitivity

\[-\frac{\partial N}{n_c} \]

of difference interferometer as a differential refractometer for aqueous solutions vs. waveguide thickness \(d_F, n_c=1.33, \lambda=633 \text{ nm} \). Top waveguide of type (a); bottom, waveguide of type (b) as in Fig. 2.30 [54].

Fig. 2.31 shows the sensitivity constants \(\frac{\partial N}{\partial n_c} \) for IO sensors working as refractometers for samples C having a refractive index near \(n_c = 1.33 \), such as aqueous solutions.

In microporous wave guiding films F the sensor effect (iii) can occur, i.e., an adsorption of analyte molecules inside the pores. This leads to a change \(\Delta n_F = (1 - q) \Delta n_p \) of the film's refractive index, where q is the packing density of the
solid material, (1-q) the relative pore volume and \(\Delta n_p \), the change in refractive index inside the pores.

\[\frac{\partial N}{\partial n_F} \]

\[\frac{\partial N_{TE_0}}{\partial n_F}, \frac{\partial N_{TM_0}}{\partial n_F} \]

\[\frac{\partial N_{TE_0 - TM_0}}{\partial n_F} \]

Fig-2.32: Calculated sensitivities \(\frac{\partial N_{TE_0}}{\partial n_F}, \frac{\partial N_{TM_0}}{\partial n_F} \) for TE\(_0\) and TM\(_0\) modes, and sensitivity \(\frac{\partial N_{TE_0 - TM_0}}{\partial n_F} \) of difference interferometer related to adsorption of molecules from a gaseous sample C inside the microporous wave guiding film F vs. its thickness \(d_F \), \(n_c=1 \) and \(\lambda=633 \) nm respectively [54].

The optical sensitivities \(\frac{\partial N}{\partial n_F} \) for adsorption from a gaseous medium such as air are shown in Fig. 2.32. For both the TE\(_0\) and TM\(_0\) modes, the sensitivities \(\frac{\partial N}{\partial n_F} \) versus \(d_F \) monotonically approach the value one for large waveguide thicknesses. For the sensor effect (iii), the field inside the wave guiding film F is responsible, not the evanescent field as in sensor effects (i) and (ii). Therefore, it is not necessary to use very...
thin high-index wave guiding films F in grating coupler and interferometric IO sensors. But with the difference interferometer high optical sensitivities $\frac{\partial N}{\partial n_F}$ are only obtained with thin waveguides. An additional advantage of very thin waveguides is that the sensors' response times due to in- and out-diffusion of the analyte are small.

2.3.4 Comparison between Fiber optic sensor and integrated optical planar waveguide sensor

Even after a number of years of development, fiber-optic sensors have still not enjoyed great commercial success, since it is difficult to replace already well-established technologies, even if they exhibit certain limitations. Fiber optic sensors have attracted considerable attention, especially in the application of biochemical species detection having excellent advantages such as good compactness and high sensitivity, shorter response time, low cost, and high compatibility with fiber optic networks. However, optical fiber-based systems do not seem promising with respect to fabrication, efficiency and miniaturization. However, planar waveguide-based platforms employing evanescent wave sensing techniques have shown tremendous improvement [71] and evanescent wave sensors have proven to be highly sensitive [72]-[74].

2.3.5 Requirement of IO planar waveguide sensors

Much of the reported work today has focused on miniaturization of sensors for the purpose of improving performance and throughput. The benefits of miniaturization, such as smaller sample requirements, reduced reagent consumption, decreased analysis time, and higher levels of throughput and automation can be very easily achieved with integrated optic sensing technology. In clinical diagnostics and in environmental monitoring there is need for these extreme sensitivities. Because IO sensors are small, they also offer the possibility to realize multi-purpose sensor arrays and the way is open for a cheap mass production similar to the way electronic chips are produced nowadays. It is not necessary for the sensor industry to bear all the cost of the research and development of IO devices and systems by itself. So we can conclude that there are
ample reasons why IO sensors should have our interest: IO sensors, to our opinion, can be expected to play a very important role in future.

2.4 Performance parameters of optical sensors
Optical sensor performance is determined by a number of parameters \([75][76]\) such as Sensitivity, Limit of Detection (LOD), Limit of Quantization (LOQ) and Specificity/Selectivity that are summarized as follows:

2.4.1 Sensor sensitivity
Sensitivity is the change of the sensor output signal in response to a change in a property of the sensor (e.g., the concentration of an analyte deposited on the sensor surface). It is a parameter that defines the ability of a sensor to transduce an input signal, (which is the variation of a sensor property) to an output one. Different definitions of sensitivity such as waveguide sensitivity etc. can be found in literature in relation to the parameter representing the changing property, i.e. the input signal. If the sensor interacts with an analyte in contact with its surface, the mass/sensor surface unit ratio can be assumed as input variable. In case of sensors sensitive to an analyte bound to the surface; the input signal is the concentration of the analyte. In this case, the parameter takes also into account some aspects such as the total exposed area and the kinetics of the binding between the sensor and the analyte.

2.4.2 Limit of Detection (LOD)
Limit of Detection (LOD) is defined as the minimum amount of concentration or mass of the biochemical substance that can be detected by the sensor over the background signal. Limit of detection depends on the resolution of the sensor. Resolution is the smallest change that can be observed in the output signal. It is a critical performance parameter for detecting analytes at low concentration or molecules at low weight and depends on transducer, read-out technique, overall noise level and data processing.
2.4.3 Limit of Quantization (LOQ)

An additive figure used to describe the smallest concentration of a measurand that can be measured by an analytical procedure is the Limit of Quantization (LOQ). It is defined as the lowest concentration at which not only the analyte can be reliably detected, but also at which some predefined goals concerning measurement errors, i.e. bias and imprecision, are met. The dynamic range is the range of the measured values detectable by the sensor. It is lower limited by the LOD and upper-limited by saturation of the sensing signal sensor or by physical limitation such as sensor breakage or unpredictable changes of the sensitivity.

2.4.4 Selectivity or Specificity

In addition to being able of producing an output signal related to the presence of an analyte, a sensor must also be able to distinguish between the analyte and any other substance. This capability is named selectivity or specificity, which is difficult to be measured due to the very large number of possible substances that do not generate an output signal. In fact, the sensor selectivity becomes particularly important when trying to detect an analyte at low concentration in an environment containing a high concentration of other materials, many of which cannot specifically bind to the sensor and therefore can produce an anomalous signal. Many biosensors exploit complex, specific binding interactions provided by nature, such as antibody-antigen, nucleic acid hybridization, biotin-streptavidin, and enzyme-substrate interactions. Other substances such as aptamers have been artificially developed for the same purpose.

2.4.5 Sample Volume

The sample volume is the smallest requested volume to make a reliable measurement. Other aspects, such as portability and cost, can have a significant impact on the commercial success of a sensing technique. Portability refers to the possibility to easily carry the biosensors. It is important for real-time detection when time and location are critical aspects, such as in case of difficult transportation of the sample to the laboratory (as an example in case of environmental pollution control and patients at bed). Cost is determined by the disposable and by the instrumentation. Although the optical
technologies are in principle more advantageous in terms of cost for performing an individual assay because they do not use tag reagents, the cost of the transducer has to be low enough. This can be achieved, as an example, by designing a sensor, even using an expensive technology that can be regenerated and used for several successive analyses.

2.5 Review on planar waveguide materials and fabrication technologies

The research described in this thesis is partly motivated by the desire to explore the interesting possibility to fabricate state-of-the-art SiON based planar waveguide sensor with potentially low cost and by applying the standardized processes using SiO$_2$/SiON as a Waveguide Material.

Table-2.3 shows the optical properties and fabrication steps of different waveguide materials used for fabrication of PID's [77]. It is found from the table that the fabrication steps of waveguide devices used for silicon based materials are as same as those used for conventional IC technology but those are not the same for other waveguide materials as mentioned in the table-2.3. The fabrication steps of silicon based materials can easily be adapted in mass production which is commercially viable. Since InP/GaAsInP waveguide materials uses Molecular Beam Epitaxial (MBE) growth technique, the fabrication cost of InP/GaAsInP waveguide is more than other materials. The basic fabrication steps for polymeric waveguide materials is LASER writing which is cheaper therefore, it is difficult to use the same technology for mass production. Moreover LASER writing technique is time consuming.

Table-2.3 also shows that high index contrast are available in SiO$_2$/SiON, InP/GaAsInP, SOI and Polymeric waveguide materials to compact waveguide device components, compared to Ti:LiNbO$_3$ and SiO$_2$/SiO$_2$-GeO$_2$ materials having lower index contrast. In addition, these materials show polarization insensitive property in comparison to Ti:LiNbO$_3$ material because of crystal structure. Actually, polymeric and silicon based materials show thermo optic properties. Although, polymeric materials have higher thermo optic coefficient and easy processing of devices, but silicon based materials are highly stable and compatible to conventional IC processing technology.
Although SOI has higher index contrast of fixed value~2, but wide variation of the index contrast (maximum up to 0.53) can be achieved by varying nitrogen and oxygen content in SiON material. In case of SOI waveguide device, the reported propagation losses of SOI waveguides is 0.1 dB/cm [78] and the fiber to chip coupling loss are of the order of 2-5 dB/facet, whereas in case of SiO$_2$/SiON, the propagation losses are same as SOI materials but fiber to chip coupling loss (order of 1 dB per facet) is lower than that of SOI material. The SiO$_2$/SiON material also shows more chemical inertness property than SOI material. More over, the processing system of SiO$_2$/SiON waveguide device is available with us for fabrication of waveguide devices. Because of the above reasons, we have chosen SiO$_2$/SiON as waveguide material in which SiON material is used for core fabrication of the planar waveguide as mentioned in detail in the Chapter-3 respectively.
Table-2.3: Waveguide materials and its properties and fabrication steps

<table>
<thead>
<tr>
<th>Materials with range of refractive index</th>
<th>Δn (max)</th>
<th>Δn taken by previous authors</th>
<th>Thermo-optic coefficient (\alpha = \frac{dn}{dT})</th>
<th>Electro-optic coefficient ((r_{33}))</th>
<th>Stability</th>
<th>Polarization sensitivity/ Birefringence</th>
<th>Basic Steps of fabrication</th>
<th>Material cost/ processing cost</th>
<th>Reported sensitivity application</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂/SiON</td>
<td>~0.53</td>
<td>0.033 [79] 0.103 [80]</td>
<td>(10^{-5}/^\circ C) [81]</td>
<td>-----</td>
<td>High</td>
<td>Polarization Insensitive [81] /10⁻⁶</td>
<td>i) Formation of SiO₂ lower cladding layer on Si-Substrate ii) Formation of SiON layer on SiO₂ layer iii) Fabrication of SiON core with photolithography iv) Formation of Top cladding SiO₂ layer</td>
<td>Moderate/ High</td>
<td></td>
</tr>
<tr>
<td>GeO₂-SiO₂/SiO₂</td>
<td>~0.02</td>
<td>0.0075 [82] 0.0025 [83]</td>
<td>(10^{-5}/^\circ C) [81]</td>
<td>-----</td>
<td>High</td>
<td>Polarization Insensitive [81] /10⁻⁶</td>
<td>i) Formation of SiO₂ lower cladding layer on Si-Substrate ii) Formation of SiO₂-GeO₂ layer on SiO₂ layer iii) Fabrication of SiO₂-GeO₂ core with photolithography and RIE iv) Formation of Top cladding SiO₂ layer</td>
<td>Moderate/ High</td>
<td></td>
</tr>
<tr>
<td>Materials with range of refractive index</td>
<td>Δn (max)</td>
<td>Δn taken by previous authors</td>
<td>Properties</td>
<td>Basic Steps of fabrication</td>
<td>Material cost/processing cost</td>
<td>Reported sensing application</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>----------</td>
<td>-----------------------------</td>
<td>------------</td>
<td>---------------------------</td>
<td>-----------------------------</td>
<td>-----------------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Silicon on insulator (SOI) (3.4767)</td>
<td>2.026</td>
<td>---</td>
<td>1.84 x 10^{-4} /°C [81]</td>
<td>High [81]</td>
<td>Polarization insensitive /10^4</td>
<td>Mode-rate/ High</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ti: LiNbO3</td>
<td>-0.06</td>
<td>0.006 [84] 0.01 [85]</td>
<td>30.8 pm/V [8]</td>
<td>High [8]</td>
<td>Polarization sensitive [8] /10^{-2}</td>
<td>High/high</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2.3: Waveguide materials and its properties and fabrication steps (continue..)
<table>
<thead>
<tr>
<th>Materials with range of refractive index</th>
<th>Δn taken by previous authors</th>
<th>Properties</th>
<th>Basic Steps of fabrication</th>
<th>Material cost/processing cost</th>
<th>Reported sensing application</th>
</tr>
</thead>
<tbody>
<tr>
<td>InP/GaAsInP</td>
<td>0.13 [86] 0.167 [87] 0.15 [88] [89]</td>
<td>$\alpha = \frac{dn}{dT}$</td>
<td>i) Formation of GaAsInP layer by using molecular beam epitaxial growth (MBE) ii) Formation of InP layer by using MBE iii) Fabrication of waveguide core with photolithography and etching</td>
<td>High/High</td>
<td>-</td>
</tr>
<tr>
<td>Index range- (3.13 - 3.5)</td>
<td></td>
<td>Electro-optic coefficient (r_{33})</td>
<td>Stability</td>
<td>Polarization sensitivity/Birefringence</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Stable [86] / 2.5x10$^{-4}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polymer</td>
<td>0.03 - 0.1 [90]</td>
<td>10^4/oC</td>
<td>10 - 200 pm/V</td>
<td>Low Polarization Insensitive / 10^{-3} - 10^{-6}</td>
<td>Low/low</td>
</tr>
<tr>
<td>Index range- (1.44 - 1.65)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
2.6 Optical planar waveguide sensor and applications-a review study

Table 2.4 shows different optical planar waveguide sensors reported by previous author. Very few studies have been reported for integrated planar waveguide optical sensor. D. Kumar and V. Singh [91] reported the analysis of the sensitivity of a five-layer metal-clad planar waveguide based sensor having nonlinear material in the cover media. It has been shown that the introduction of the nonlinear material in the waveguide not only improves the sensitivity but also provides additional parameters to increase the sensitivity. Fig 2.33 shows the schematic of a metal-clad planar waveguide based sensor having five layers structure with 1 mm thick glass plate as a substrate \([n_s=1.48534(\text{FK51 A})]\), a metal cladding of 30 nm silver \((n_M = 0.065 + i4.0)\) a 500 nm thick polystyrene (PS) film \((n_F=1.59)\); the affinity layer is approximately 30–60 nm thick and coated with carbon source or hydrophobic plastic as demonstrated by V. Singh and D. Kumar. Since the number of layers is more, fabrication cost of this type of sensor is high.

![Fig-2.33: Schematic diagram of a five-layer nonlinear asymmetric metal-clad planar waveguide with their refractive indices.](image)

Parriaux et al. [92] presented an extensive theoretical analysis for the design of evanescent linear waveguide sensors and derived the conditions for the maximum achievable sensitivity for both TE and TM polarizations as shown in Fig. 2.34.
Fig-2.34: Step-index slab waveguide of width w and substrate, guide, and cover refractive indices n_s, n_g, and n_c.

In this case, the asymmetry parameter is $a = \frac{n_g^2 - n_c^2}{n_s^2 - n_c^2}$. But sensing area of this type of waveguide is small and hence sensing is reduced.

Fig-2.35: Schematic structure of integrated waveguide sensor with a metamaterial layer.

Taya et al. [93] has shown that the sensitivity of an optical waveguide sensor can be dramatically enhanced by using a metamaterial with negative permittivity and permeability, as shown in Fig. 2.35. In the figure, a guiding layer with permittivity ε_f,

©A.Dutta@Tezpur University
permeability μ_1 and thickness d_1 is sandwiched between a semi-infinite substrate with permittivity ε_1 and permeability μ_1 and a semi-infinite cladding with permittivity ε_c and permeability μ_c. In the working region, there is a layer of metamaterial with negative permittivity ε_m, negative permeability μ_m, and thickness d_2 between the cladding and the guiding layer. In this sensor, the number of layers is more and hence fabrication cost is also high.

![Image of slot-waveguide micro ring resonator](image)

Fig-2.36: (a) Schematic cross section of the Si₃N₄/SiO₂ ring slot-waveguide used for optical sensing of biomolecules. Triangles and Y-shaped symbols represent antigen and antibody molecules, respectively.

Carlos et al. [94] has demonstrated label-free molecule detection by using an integrated biosensor based on a Si₃N₄/SiO₂ slot waveguide micro ring resonator as shown in Fig. 2.36(a). The device consists of a 70 µm radius slot waveguide ring resonator made of Si₃N₄ on SiO₂. The Si₃N₄ rails of the slot-waveguide ring are separated by 200 nm (w_{slot}), and their widths are 400 and 550 nm for the outer and inner rails, respectively, as shown in Fig. 2.36(b). Although this type of sensor structure has number of layers, the slot type sensing structure is slightly complex.
Fig-2.36: (b) Calculated quasi-TE mode of the ring slot-waveguide turning to the left (−x axis) with a radius of curvature of 70 μm and an operation wavelength of 1.3 μm.

P. Karasinski [95], presented planar waveguide sensor structures with grating couplers for the application in evanescent field spectroscopy as shown in Fig. 2.37.

Fig-2.37: Planar sensor structure
Planar slab waveguides of high refractive index \(n = 1.8 \) were produced in sol-gel technology. The layers SiO\textsubscript{2}:TiO\textsubscript{2} were coated on BK7 glass substrate using dip-coating method. Since the structure is fabricated by sol-gel technology but not by conventional IC technology, it cannot have mass production.

Fig-2.38: (a) Schematic view of a slot-waveguide. (b) Calculated \(E_x \) profile of the quasi-TE eigen mode in a Si \((n_H = 3.45)/\text{SiO}_2 \ (n_S=n_C=1.44) \) slot-waveguide at a wavelength of 1.55 \(\mu \text{m} \). E-field is enhanced in the nano scale slot-region of refractive index \(n_S \).
Carlos Angulo Barrios [96] has shown in Fig. 2.38 that, the use of slot-waveguides has proven to be advantageous over conventional waveguides in terms of sensitivity and potential use in applications requiring the fusion of nano-photonics and nano-fluidics.

Densmore et al. [97] demonstrated a new highly sensitive evanescent field sensor using silicon-on-insulator (SOI) photonic wire waveguides. P. Karasinski [98] presented the results of theoretical analysis and the results of experimental research of composite sol–gel SiO2:TiO2 film/ion–exchange glass optical waveguides, as shown in Fig. 2.39. The theoretical part of the work presented modal characteristics and the influence of the parameters of the uniform waveguide film on homogeneous sensitivity. The fabrication cost is high.

![Diagram of a composite optical waveguide structure.](image)

Very recently, S. A. Taya and Taher M El-Agez [99], presented an extensive theoretical treatment of an optical waveguide sensor consisting of thin dielectric film surrounded by an aqueous cladding and an ideal non-absorbing plasma substrate. They have considered the case when the frequency of the guided light is greater than the plasma frequency so that the refractive index of the substrate is less than unity. Fig. 2.40 shows the structure that provides a reverse symmetry configuration in which the refractive index of the substrate is less than that of the cladding. Although the sensor structure is simple, the device is costly as the fabrication is done on the costly plasma substrate.
Zou et al. [100], presented planar waveguides with Fermi graded refractive index variation were examined as sensors for the measurement of solution concentrations. The waveguides were fabricated on B270 optical glass by an ion exchange method using the composite salt 0.004AgNO₃-0.996NaNO₃. The experimental device for sensing solution concentrations is shown in Fig. 2.41. This type of sensor requires very good alignment system which can be made portable.

Yimit et al. [101], presented the design and fabrication of highly sensitive thin-film composite optical waveguides (OWG) sensor device with high refractive index for sensor applications as shown in Fig. 2.42(a) and Fig. 2.42(b) respectively.
Fig-2.42: (a) Structure of the composite OWG and the principle of operation. n_s, n_{0s}, and n_f are respectively, refractive index of the substrate (1.515), the K$^+$-ion-exchanged layer (1.5195), and of the thin film. (b) Structure of the ion-exchanged composite OWG.

The arrow shows how the guided light is transferred from one part of the OWG to another part via adiabatic transition.

Airoudj et al. [102] presented a new Multilayer Integrated Optical sensor (MIO) for ammonia detection at room temperature as shown in Fig. 2.43(a) and Fig. 2.43(b) respectively. The sensor is based on the interaction of the evanescent wave of the guided mode (orthogonally polarized TE$_0$ and TM$_0$ modes) with the sensitive material. Then, the penetration depth of the evanescent field must be higher than the passive layer thickness. Since sensing area is less, sensitivity is less than the other sensors.
Fig-2.43: Schematic structures of the two types of waveguide sensors: (a) conventional waveguide sensor; (b) multilayer integrated waveguide sensor.

Veldhuis et al. [103], has shown that the sensitivity of the effective refractive index on the cladding index in evanescent optical waveguide sensors, can be larger than unity. It has been shown that in the case of homogeneous sensing with a three-layer slab waveguide the sensitivity of the effective refractive index to variations of the cladding index can be larger than unity for TM polarization and strong guidance. The Schematic representation of the slab waveguide is shown in Fig. 2.44.
Fig-2.44: Schematic representation of the slab waveguide under study. The grey area indicates the normal electric field component of the TM mode in a large-guidance waveguide.

From the above studies, it is evident that very good planar waveguide sensor requires the following characteristics:

(i) Simple structure having less number of layers for reducing cost of fabrication.
(ii) More sensing area for enhancement of sensitivity.
(iii) Use of low cost material for reduction of fabrication cost.
(iv) High selectivity
(v) Use of conventional IC processing technology for mass production
(vi) Simple alignment set-up for making it portable

From the reported sensors as mentioned in Table-2.4, it is seen that no planar waveguide sensors show all the above characteristics together. So it is required to propose and develop simple planar waveguide based sensor structure having bigger sensing area and less number of layers using low cost materials. The use of conventional IC technology can provide its production for reduction of fabrication cost. In this thesis, we have tried to propose and develop the same sensors which are reported in chapter-3, 4 and 5 respectively.
Table-2.4: Characteristics of optical sensors as reported by different authors.

<table>
<thead>
<tr>
<th>Author’s Name/ material used</th>
<th>Type of waveguide Structure</th>
<th>Core size and cladding width (μm)</th>
<th>Sensitivity</th>
<th>Wavelength of light source</th>
<th>Application</th>
<th>Fabrication cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kumar, D., & Singh, V. [91] Glass/Silver</td>
<td>Planar waveguide</td>
<td>0.5x0.03 (μm)2</td>
<td>5.36 x 10$^{-4}$ nm</td>
<td>0.6328 μm</td>
<td>-</td>
<td>High</td>
</tr>
<tr>
<td>Parriaux et al. [92]</td>
<td>Planar waveguide</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Moderate</td>
</tr>
<tr>
<td>Taya, S.A., et al. [93] Si$_3$N$_4$</td>
<td>Planar waveguide</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>High</td>
</tr>
<tr>
<td>Carlos, A. B., et al. [94] Si$_3$N$_4$/SiO$_2$</td>
<td>Slot waveguide</td>
<td>-</td>
<td>1.8 and 3.2 nm/ (ng/mm2)</td>
<td>1.3 μm</td>
<td>detection of Bovine Serum Albumin and anti-BSA, respectively.</td>
<td>Moderate</td>
</tr>
<tr>
<td>Karasinski, P. [95] SiO$_2$:TiO$_2$</td>
<td>Planar waveguide</td>
<td>-</td>
<td>0.113 and 0.147</td>
<td>677 nm</td>
<td>Chemical and biochemical measurements</td>
<td>Moderate</td>
</tr>
<tr>
<td>Carlos, A.B. [96] SiO$_2$/Si$_3$N$_4$ and Si/SiO$_2$</td>
<td>Slot waveguide</td>
<td>-</td>
<td>212 nm/RJU</td>
<td>1.55 μm</td>
<td>Biochemical sensing</td>
<td>Moderate</td>
</tr>
<tr>
<td>Densmore, A., et. al. [97] SOI</td>
<td>Planar waveguide</td>
<td>-</td>
<td>0.31</td>
<td>1550 nm</td>
<td>bio-chip applications</td>
<td>High</td>
</tr>
<tr>
<td>Karasinski, P. [98] SiO$_2$:TiO$_2$</td>
<td>Planar waveguide</td>
<td>-</td>
<td>3 x 10$^{-3}$ (TM1) 1.4 x 10$^{-3}$ (TE1)</td>
<td>677 nm</td>
<td>Chemical and biochemical measurements of water solutions.</td>
<td>High</td>
</tr>
<tr>
<td>Sofyan, A.T., & Taher, M.E. [99] water/ZeSe/ideal plasma</td>
<td>Planar waveguide</td>
<td>-</td>
<td>-</td>
<td>1550 nm</td>
<td>Characterization of plasma media</td>
<td>High</td>
</tr>
<tr>
<td>Author's Name/ material used</td>
<td>Type of waveguide Structure</td>
<td>Core size and cladding width (µm)</td>
<td>Sensitivity</td>
<td>Wavelength of light source</td>
<td>Application</td>
<td>Fabrication cost</td>
</tr>
<tr>
<td>------------------------------</td>
<td>-----------------------------</td>
<td>----------------------------------</td>
<td>-------------</td>
<td>---------------------------</td>
<td>-------------</td>
<td>------------------</td>
</tr>
<tr>
<td>Renling, Z., et al. [100] B270 optical glass/ composite salt 0.004AgNO₃ - 0.996NaNO</td>
<td>Planar waveguide</td>
<td>-</td>
<td>-</td>
<td>632.8 nm</td>
<td>-</td>
<td>High</td>
</tr>
<tr>
<td>Yimit, A., et al. [101] potassium-ion-exchanged (K+) glass</td>
<td>Planar waveguide</td>
<td>-</td>
<td>10^4</td>
<td>633 nm</td>
<td>(bio-) chemical sensing</td>
<td>High</td>
</tr>
<tr>
<td>Airoudj, A., et al. [102] polyaniline (PANI)/ polymethyl methacrylate (PMMA)</td>
<td>Planar waveguide</td>
<td>-</td>
<td>17% for $LI = 5$ mm and 6% for $LI = 2$ mm</td>
<td>632.8 nm and 980 nm</td>
<td>ammonia detection</td>
<td>Moderate</td>
</tr>
<tr>
<td>Veldhuis, G.J., et al. [103] InP/GaAsInP</td>
<td>Planar waveguide</td>
<td>-</td>
<td>1.35</td>
<td>1550 nm</td>
<td></td>
<td>High</td>
</tr>
</tbody>
</table>
2.6.1 Refractometric optical sensing and petroleum fuel adulteration

Since the proposed work consists of sensing of adulteration of petroleum products, we have tried to report previous studies on adulteration of petroleum products.

The Motor Spirit and High Speed Diesel (Regulation of Supply and Distribution and Prevention of Malpractices) Order, 1998, defines adulteration as the introduction of a foreign substance into motor spirit/high speed diesel, illegally or unauthorized with the result that the product does not conform to the requirements and specifications of the product. The foreign substances are called adulterants, which when introduced alter and degrade the quality of the base transport fuels. Adulteration is financially unattractive when less than (10%) while more than 30% [104] without doubt is likely to be detected by the user from the degradation of the performance of the engine caused by the adulterated fuel. In addition, we see that the oil companies add antiknock compounds like Tetra Ethyl Lead (TEL), \((CH_2CH_2)_4Pb\) to raise the antiknocking property.

\[
4CH_2CH_2Cl + 4NaPb \rightarrow (CH_2CH_2)_4Pb + 4NaCl + 3Pb
\]
(2.48)

To check the adulteration effectively, it is necessary to monitor the fuel quality at the distribution point itself. The equipment for this purpose should be portable and the measurement method should be quick, capable of providing test result within a very short time. The measuring equipment should also be preferably inexpensive (as a large number of such units would need be simultaneously deployed) and easy to use. It is found that the earlier techniques available for detecting adulteration [105]-[111] require taking out the sample for measurement and thus they are time consuming and are unable to sense adulteration level below 20 % [112]. So in our work, we try to detect adulteration of petroleum products (specially petrol with diesel, diesel with kerosene and petrol with both kerosene and diesel) below 20% level with accuracy, enhanced sensitivity and minimal sample volume by using optical waveguide sensor (mentioned in chapter 3). This technique is immunity to electromagnetic interferences, avoiding chemical hazardous. Besides all these above advantages, planar waveguide based optical sensors offer an important key feature that the sensor is very sensitive to variation in refractive index of sensing material surrounding the core (as cladding). Before detection of adulteration, we like to mention chemical composition of petroleum.
Petroleum is a mixture of Hydrogen and Carbon starting number of carbon atoms from C₁ to C₇₀ and more. The ultimate analysis of petroleum indicates that in addition to hydrocarbons (83-87% of Carbon (C) and 11-15% of Hydrogen (H)) small quantities of nitrogen (N), sulphur (S) and oxygen (O) are also present. Sulphur is present generally as alkyl sulphides, hydrosulphides and hydrogen sulphide, and thiophene and less frequently, combined oxygen is present as carboxylic acids (napthelenic acids) (COOH group), ketones (C=O) and phenols (C₆H₅OH). The disagreeable odour of petroleum is due to the sulphur compounds present in it. The hydrocarbon present in the crude petroleum may be divided into two main classes.

Open chain or aliphatic compounds: comprising of
- n-paraffins series \((C_nH_{2n-2}) \),
- isoparaffin series \((C_nH_{2n+2}) \) and,
- olefin series \((C_nH_{2n}) \).

Ring compounds: comprising of
- naphthalene series \((C_nH_{2n}) \) (derivative of cyclopentane and cyclohexane)
- aromatic series or benzene series.

In petroleum gaseous paraffins (hydrocarbons), methane \((CH_4) \) to butane \((C_4H_{10}) \) are present in the dissolved state. The napthenic hydrocarbons present in petroleum are mainly the derivatives of cyclopentane and cyclohexane. As Fig. 2.45 indicates, aromatic compounds have higher carbon-to-hydrogen (C/H) ratios than napthenes, which in turn have higher C/H ratios than paraffins. The heavier (more dense) the crude oil, the higher its C/H ratio. Due to the chemistry of oil refining, the higher the C/H ratio of a crude oil, the more intense and costly the refinery processing required to produce given volumes of petrol/gasoline and distillate fuels. The proportions of the various hydrocarbon classes, their carbon number distribution, and the concentration of hetero-elements in a given crude oil determine the yields and qualities of the refined products. The petroleum fraction for petrol, kerosene and diesel is shown in Table 2.5.
Table 2.5: Petroleum Fractions

<table>
<thead>
<tr>
<th>Sl. No</th>
<th>Petroleum Fraction</th>
<th>Boiling Range °C</th>
<th>Approximate No. of Carbon atoms</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Petroleum Ether</td>
<td>30-70</td>
<td>C₅-C₇</td>
</tr>
<tr>
<td>2</td>
<td>Petrol</td>
<td>40-140</td>
<td>C₅-C₆</td>
</tr>
<tr>
<td>3</td>
<td>Naphtha</td>
<td>140-180</td>
<td>C₄-C₁₀</td>
</tr>
<tr>
<td>4</td>
<td>Kerosene</td>
<td>180-250</td>
<td>C₁₀-C₁₆</td>
</tr>
<tr>
<td>5</td>
<td>Diesel</td>
<td>250-320</td>
<td>C₁₀-C₁₈</td>
</tr>
</tbody>
</table>

Fig. 2.46 shows the step wise process of fractional distillation for obtaining the petroleum products such as petrol, kerosene and diesel.

Fig-2.45: Important Classes of Hydrocarbon Compounds in Crude Petroleum
2.6.1.1 Causes of petroleum adulteration

Most developing country governments have not yet established a system of fines that can act as a strong deterrent to fuel adulteration. There are number of reasons for this, including poor governance, shortage or absence of technical staff and paraphernalia for designing and conducting monitoring. Given these limitations, identifying and dealing with this abuse will require addressing problems on multiple fronts. The primary factors that encourage the practice of adulteration are the following –

- Existence of differential tax levels amongst the base fuels, intermediate products and byproducts. The adulterants being taxed lower than the base fuels give monetary benefits when mixed with replacing a proportion of the base fuels.
- Differential pricing mechanism of fuels and adulterants and easy availability of adulterants in the market.
- Lack of monitoring and consumers awareness.
- Lack of transparency and uncontrolled regulations in the production-supply and marketing chain for intermediates and byproducts of refineries.
Non-availability of mechanism and instruments for spot-checking the quality of fuels.

2.6.1.2 Impacts due to petroleum adulteration

High sulphur contents of the kerosene can deactivate the catalyst and lower conversion of engine out pollutants. Kerosene addition may also cause fall in octane quality, which can lead to engine knocking. When petrol is adulterated with diesel fuels, the same effect occurs but usually at lower levels of added diesel fuel. Both diesel and kerosene added to petrol increases engine deposit formation. Petrol may also be adulterated with petrol boiling range solvent like toluene, xylene and other aromatics. With the 'judicious' adulteration, the petrol would not exhibit drivability problems in motor vehicles. Larger amounts of toluene and/or mixed with xylene cause some increase in HC, CO, NOx emissions, and significant increase in the level of air toxins -especially benzene - in the tailpipe exhaust. The adulterated petrol itself could have increased potential human toxicity if frequent skin contact is allowed. Extremely high levels of toluene (45 % or higher) could cause premature failure of neoprene, styrene butadiene rubber and butyl rubber components in the fuel system [112]. This has caused vehicle fires in some cases, especially in older vehicles. Adulteration of gasoline by waste industrial solvents is especially problematic as the adulterants are so varied in composition. They causes increased emissions, may even cause vehicle breakdown. Even low levels of these adulterants can be injurious and costly to vehicle operation. For petrol, any adulterant that changes its volatility can affect drivability. High volatility (resulting from addition of light hydrocarbons) in hot weathers can cause vapour lock and stalling. Low volatility in cold weather can cause starting problems and poor warm-up [113].

The amalgamation of kerosene with automotive diesel is generally practiced by oil industry worldwide as a means of adjusting the low temperature operability of the fuel. This practice is not harmful or detrimental to tailpipe emissions, provided the resulting fuel continues to meet engine manufacturer's specifications (especially for viscosity and cetane number). However, high-level adulteration of low sulphur diesel fuel with higher level sulphur kerosene can cause the fuel to exceed the sulphur
maximum. The addition of heavier fuel oils to diesel is usually easy to detect because
the resultant fuel will be darker than normal. Depending on the nature of these heavier
fuel oils and the possible presence of additional PAHs, there could be some increase in
both exhaust PM and PAH emissions.

2.6.1.3 Petroleum adulteration detection as reported by earlier authors
As mentioned earlier, adulteration of transport fuels at the point of sale and during
transportation is a routine problem in India. There are several petroleum products
available in our country, which are close substitute of petrol and diesel, but are
available at considerable lower prices. The price differential is usually in the range of
Rs. 70-80 in case of petrol and Rs. 50-60 in case of diesel. Since kerosene is usually
considered as poor man's fuel, Govt. of India has been subsidizing it for public
distribution for several years. It is common knowledge that significant portion of this
subsidized kerosene is being diverted for adulterating petrol. Several studies/survey
carried out recently, have simultaneously pointed out alarming rise in the cases of fuel
adulteration in our country and some of them are as below –

- Tata Consultancy has conducted an extensive survey on the kerosene distribution
 pattern within the country [114]. They arrived at the conclusion that more than
 30% of Kerosene distribution intended for household consumption through PDS
 outlets flowed back to industry in one form or the other. This was a clear
 indication towards the flourishing business of adulteration in our country.

- According to Anti Adulteration Cell of India, Naphtha is a commonly used
 adulterant for petrol. The modus operandi is to import the product in huge
 quantity and divert it for adulteration. In a major seizure, recently the Cell
 detected import of naphtha through the Mangalore port allegedly for adulteration
 of auto fuels in Kerala, Andhra Pradesh, Karnataka, W. Bengal and M.P [114].
 The intention was to import and move the products to a factory in Pondicherry,
 where it got blended with other adulterant chemicals. Following the investigation,
 the Cell sealed 82 kL of naphtha, 31 kL of other products along with plant and
 machinery allegedly used for adulteration.
Similarly a case of adulteration has also been reported from Uttar Pradesh in the city of Meerut, where an authorized transport company was caught with adulterated stock. This transport agency had the authority to transport both petrol & diesel to retail outlets and solvents for industrial use. The agency was supposedly using its workplace for adulterating diesel with kerosene.

According to news in "The Times of India", the State Government of Maharashtra loses a whopping Rs. 81 lakh and Rs. 75.6 lakh every month on account of combined sales & excise tax revenue against petrol and diesel adulteration in Mumbai city alone. This is believed to be 10 percent of the genuine sale, industry source reveal [114].

Various estimates have been made of the extent of financial loss to the national exchequer as well as the oil companies as a result of diversion of PDS kerosene, use of off-spec, low value, hydrocarbons mixed with petrol and diesel, evasion of sales tax etc. Although these estimates vary over a wide range, it is safe to assume that the nation is losing at least Rs. 10,000 crores annually as a result of adulteration of fuel. If too this is added the social costs as a result of environmental pollution, damage to vehicles and other engines, etc., the loss could be substantially higher [114].

With the plethora of foreign car manufacturers making a beeline to set up manufacturing facilities in the country, their first and immediate concern is the quality of petrol that gets supplied to the users' cars. They have uniformly found that supplies are heavily adulterated and particularly the Octane content is much lower than the specification value of 87%.

Recently under the direction of the Supreme Court, Environment Pollution Control Authority (EPCA) through a local NGO (CSE) carried out tests of fuel samples from retails outlets and other points. The results of the study reveal 8.3% sample failure of the sample tested against 1-2 percent reported by oil companies in the past. The study further reveals that adulterated fuel in intelligent mix allowed retail outlets to reap a huge profit of more than Rs. 25,000 a day [114].
2.6.1.4 Status of petroleum adulteration in Indian context

Studies on petrol adulteration started in 1966 with the use of semi-micro chromatography to deal with the problem of adulteration [115]. It has the objective of providing an alternative experimental procedure for a modified phase-titration method [116][117] which shows major improvements over currently available approaches and has considerable potential as the basis of an "in the field" method of analysis. Table-2.6 shows the previous reported studies on petroleum adulteration detection. Of the range of optical fiber sensors reported in the literature, it is found that the intensity based optical fiber sensors represent one of the most basic types of optical fiber sensor [118]. But the main drawback of these types of sensors is that the source fluctuations will affect the output intensity which can be overcome using a reference signal. Languese [119] presented an optical fiber refractometer for liquids which eliminates the influence of attenuation due to the liquids. L.S.M. Wiedemann et al. [120] proposes a method to detect adulteration by using physico-chemical properties of gasoline samples and performing statistical analysis. Sukhdev Roy [119] proposes a method of changing the refractive index of cladding of fiber for detecting adulteration of fuel which is based on the modulation of intensity of light guided in the fiber due to change in the refractive index of the cladding formed by adulterated fuel and the phenomenon of evanescent wave absorption. L. M. Bali [121] et al has developed an optical sensor for determining the proportional composition of two liquids in a mixture. It is based on changes in the reflected light intensity at the glass-mixture interface brought about by the changes in the proportion of one liquid over that of the other in the mixture. It uses a simple configuration consisting of the end separated fibers where T-R coupling is decided by medium filled in the gap. This configuration however is difficult to handle because of precision needed for alignment so as to get maximum sensitivity.

From the studies mentioned in Table-2.6, it is evident that the optical sensors used in these structures have lesser sensitivity, because of having less sensing area. Moreover these sensors require more sample volumes for testing. So these sensors are not suitable for online testing. The planar waveguide sensors proposed in this thesis (as mentioned in Chapter-3) has more sensitivity requiring less sample volumes for its adulteration detection. In Chapter-4, we have tried to mention how our proposed...
sensors were used for adulteration sensing with high sensitivity and minimal sample volumes.
Table 2.5: Different adulteration detection techniques as reported by previous authors (continue..)

<table>
<thead>
<tr>
<th>Author's Name/ material or instrument used</th>
<th>Type of sensor</th>
<th>Length of the sensor</th>
<th>Core size (µm) and cladding width (µm)</th>
<th>Numerical Aperture (NA)/ microscope objective</th>
<th>Sensitivity</th>
<th>Wave length of light source</th>
<th>Application</th>
<th>Room Temperature</th>
<th>Noticeable advantage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mishra, V., et al. [124]/ Single mode fiber (SMF-28, Corning) with a UV written long period fiber grating (LPFG)</td>
<td>Fiber optic sensor</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.12 nm</td>
<td>hydrocarbon contamination study</td>
<td>-</td>
<td>Detect presence of 10% contaminant in petrol and diesel.</td>
<td></td>
</tr>
<tr>
<td>Patil, S. S., et al. [125]/ microcontroller</td>
<td>Fiber optic sensor</td>
<td>-</td>
<td>488 µm x 612 µm</td>
<td>0.47</td>
<td>-</td>
<td>Adulteration detection applications</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Author’s Name/ material or instrument used</td>
<td>Type of sensor</td>
<td>Length of the sensor</td>
<td>Core size (μm) and cladding width (μm)</td>
<td>Numerical Aperture (NA)/ microscope objective</td>
<td>Sensitivity</td>
<td>Wave length of light source</td>
<td>Application</td>
<td>Room Temperature</td>
<td>Noticeable advantage</td>
</tr>
<tr>
<td>--</td>
<td>----------------</td>
<td>---------------------</td>
<td>--------------------------------------</td>
<td>---</td>
<td>-------------</td>
<td>----------------------------</td>
<td>-------------</td>
<td>-------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>Kishor, K., et al. [122]/ Optical time-domain reflectometer</td>
<td>Optical-fiber based</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Pulsed laser diode at 1550 nm</td>
<td>Determination of adulteration in petrol</td>
<td>25°C</td>
<td>-</td>
</tr>
<tr>
<td>Roy, S. [119]/plastic-clad-silica (PCS)</td>
<td>Fiber optic sensor</td>
<td>600 (μm)</td>
<td>0.4/20x</td>
<td>-</td>
<td>-</td>
<td>He-Ne laser at 632.8 nm</td>
<td>Determining adulteration of petrol and diesel by kerosene</td>
<td>30°C</td>
<td>-</td>
</tr>
<tr>
<td>Bahari, M. S., et al. [123]/ spectrophotometer</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Spectrophotometer set at 600 nm.</td>
<td>Determination of the adulteration of petrol with kerosene</td>
<td>-</td>
<td>Reduction of titration volume difference in batch variations</td>
</tr>
</tbody>
</table>
2.6.2 Integrated optical waveguide sensor as detection element for lab on a chip sensing application

Since our proposed work contain sensing of glucose concentration in blood, in this context we have tried to report previous works as reported by earlier authors on diagnose/detection of glucose concentration in blood. While significant advances have been made in the incorporation of light sources and detectors into chip-based optical platforms, this section primarily focus on integrated optical detection with microfluidic lab-on-a-chip (LOC) device platform. For separation and concentration of the different components in whole blood, we have seen that microfluidics based LOC devices use numerous techniques such as, acoustophoresis [126], cross-flow filtration [127], centrifugal forces [128], or gravitational sedimentation [129]. It is seen that LOC offer great possibilities in such applications as clinical point-of-care diagnostics, such as detection of blood glucose concentration, largely due to the fact that they do not involve any complexity. Great advantages include reduction of the analytical testing cost and time and also reduced consumption of sample and reagents. An accurate and fast detection is achievable with LOC, because detection is carried out off-chip which can manipulate small volumes of liquid in microfluidic channels of tens to hundreds of micrometers. This entails the miniaturization of analytical systems and reduction of required sample and reagent volumes onto a small microchip. Although several detection methods are being investigated including optical, magnetic, capacitive, and electrochemical, among these methods, integrated waveguide based technique using LOC is incredibly advantageous compared to the existing techniques. In such techniques, it is seen that since the governing physics of waveguide operation and the concept of their utility as an analytical device are quite simple, light is guided through the device on account of Frustrated Total Internal Reflection (FTIR), which generates an evanescent optical field that decays exponentially from the sensor surface. The present survey in this section through the relevant literature serves to highlight the most recent progress in applying chip-integrated waveguides for lab-on-a-chip (LOC) sensing applications, with special emphasis on detection of glucose level concentration in diabetes.
Development of the LOC technologies offers other indispensable benefits including better process control and lower manufacturing cost [130]-[132]. It is observed optical sensors using LOC offer compact alternatives to classical instrumentation while delivering comparable performance and disposable formats and makes LOC a superior candidate to support sensing applications. The two main factors that play a character in the choice of detection method for an LOC application are sensitivity and scalability to smaller dimensions. Moreover, devices incorporating LOC do not require a large amount of peripheral equipment for acquisition of detector signal. This makes the development of portable instrumentation based on LOC devices a realistic possibility.

The most important benefits of such an integrated waveguide based LOC platform include:

- Disposability
- Rapid prototyping and a final product with the same tools and materials
- High process repeatability
- Integrated functionality
- Enabling fabrication of multiple chips simultaneously.

2.6.2.1 Non-invasive sensing approach for measurement of glucose concentration

The development of ultra-compact and sensitive sensing structures with minimal sample requirement for accurate sensing has been of great recent interest. Waveguide-based optical sensing technology appears to be exceptionally amenable to chip integration and miniaturization. One of the main advantages of such technology is the possibility to integrate all the functions (chemical, optical, microfluidics and electronics) in one single platform offering an ideal solution for the implementation of true lab-on-a-chip devices. Fig. 2.47 summarizes the vast field of glucose measurement techniques and distinguishes three different categories: invasive, minimal invasive and non-invasive approaches. Optical techniques like polarimetry [133][134], Raman spectroscopy [135][136], diffuse reflection spectroscopy [137][138], absorption spectroscopy [139]-[141], thermal emission spectroscopy [142][143], fluorescence spectroscopy [144][145] and photoacoustic (PA) spectroscopy [146]-[148] have been
used to sense glucose with respect to non-invasive monitoring. As we see that most current devices are simple planar devices that do not incorporate the detection and after the reaction has taken place, the readout must be done with complex instrumentation in laboratory settings. That is the main reason why we have incorporated “on-chip” detection by using optical waveguide based sensors. By using this advanced technology, diagnosis in developing countries for detection of glucose concentration of diabetes patient could become an important achievement for the near future.

Fig. 2.47: Overview of possible techniques and active research areas for in-vivo glucose measurements.

2.6.2.2 Significance of sensing glucose

Although numerous schemes have been developed for the determination of glucose, optical sensors for sensing of glucose are a matter of highly active research. The first sensing schemes for true on-line sensing (both electrochemical and optical) have been reported several decades ago. One is based on the measurement of the quantity of oxygen consumed according to Eq. (2.46) that is catalyzed by GOx. Alternatively, the
H₂O₂ formed according to Eq. (2.46) may be determined by electrochemical or optical means. A third option consists in the determination of the quantity of protons formed (i.e. the decrease in pH) (Eq. (2.47)).

\[
D - \text{glucono-1,5-lactone} + H₂O → \text{gluconate} + H^+ \quad (2.46)
\]

\[
\beta - D - \text{glucose} + O_2 → D - \text{glucono-1,5-lactone} + H₂O₂ \quad (2.47)
\]

The enzyme glucose dehydrogenase also has been used to sense glucose. It catalyzes the conversion of glucose to form a gluconolactone according to Eq. (2.48):

\[
\beta - D - \text{glucose} + NAD^+ → D - \text{glucono-1,5-lactone} + NADH \quad (2.48)
\]

The amount of NADH formed according to Eq. (2.48) may be measured, for example, by photometry at 345 nm or via its fluorescence peaking at 455 nm, but this reaction cannot be easily reversed and comes to an end once all NAD⁺ is consumed. Hence, it is less suited (and less elegant) in terms of continuous sensing. The electrons transferred in Eq. (2.46) can be directly shuttled onto an electrode by so-called direct enzyme wiring (a direct electron transfer from an electrode to the reaction center, either by mediators or by incorporating nano wires directly into the enzyme) [149][150]. Sensors employing mediators are in widespread use ever since the 1990s, and sensors based on nano wires since the year 2000.

All present-day commercial optical sensors rely on the use of GOx. Representative (larger) manufacturers include OptiMedical Inc., Idexx Inc. Becton-Dickinson Comp. Teruma Inc.

2.6.2.3 Glucose concentration in human physiological fluids—blood

Monitoring of glucose concentrations (GC) in blood or interstitial fluid is crucial towards understanding the physiological state.

In the quest to demonstrate the benefits of glucose monitoring, several sensors have recently been developed which allow continuous glucose monitoring for several days [151]. The most advanced sensors include the Medtronic Minimed CGMS® Gold System® from Medtronic Diabetes (Northridge, CA), the STS® sensor from DexCom (San Diego, CA) and the FreeStyle Navigator® Continuous Glucose Monitor by Therasense/Abbott Diabetes Care (Alameda, CA). These commercially-available implantable sensors are based on electroenzymatic sensing platforms, which exhibit
excellent analytical performance in vitro. However, they also require a permanent connection from the implanted sensor to an instrument outside the body, providing a potential infection pathway [152], and have drawbacks of instability of the enzyme [153] electrochemical system, inaccuracy, low precision, extended warm-up period and frequent calibration requirements that make them more cumbersome for in vivo use [154]-[157]. Therefore, most diabetes patients still prefer to measure their blood glucose using a glucometer [158], which involves pain. In fact, the poor patient compliance with recommended testing regimens due to the invasive nature of “finger-pricking,” has further fueled the research for noninvasive and minimally-invasive technologies.

Several embodiments of potentially-implantable probes have been demonstrated in the past, including enzymatic assays [159]-[164]. The design and implementation of enzymatic sensors for long-term in vivo application is complicated due to the consumption of glucose and oxygen, generation of potentially toxic byproducts (gluconic acid, hydrogen peroxide), enzyme degradation, and the strong dependence of the glucose response on local tissue oxygen. Therefore, an alternative mechanism based on affinity binding is being investigated by many groups [165]-[171]. The first affinity based sensor proposed for monitoring glucose levels within the interstitial fluid was reported by Schultz et al [166]. Since that pioneering effort, a number of advancements toward in vivo use have been reported, including poly (ethylene glycol) (PEG) hydrogel microspheres [172] and fuzzy microshells [171]. Follow up work has extended the optical interactions into the near infrared by labeling Con A and dextran with NIR dyes [170],[173],[174]. However, the true potential for use in vivo remains a question because of lingering concerns about Con A toxicity, aggregation and irreversible binding [175]. For this reason, alternative receptors have been studied for “smart tattoo” formats, including boronic acid derivatives [176]-[178], apo-enzymes [179]-[183] and genetically engineered glucose-binding proteins [184][185]. So, it is found that measurement of glucose concentration in human physiological fluids is of great importance. In clinical diagnosis of metabolic disorders like diabetes this is characterized by high levels of glucose in human physiological fluids.
To address these issues, we report on chapter-5 of this doctoral thesis development of a technique for rapid detection of glucose concentration in blood plasma using optical waveguide sensor and integrated with LOC. The microfluidic LOC device that we use is a commercially available microfluidic chip (Product code: 15-1503-0168-02, microfluidic ChipShop GmbH, Stockholmer Str.20D-07747 Jena, Germany, dated: 05-03-2013) of size 75.5mm x 25.5mm x 1.5 mm) [200]. The chip is specifically engineered and optimized for the generation of high quality plasma. It consists of chamber volume of 25 μl, a luer interface for blood loading, a support channel with a cross section of 300μm x 100μm for the transfer of the blood on top of a separation membrane. The ultimate goal of the work of this thesis is to integrate an entire optical...
sensing system with LOC for separation of blood plasma from whole blood which is
discussed in detail in chapter-5 of this thesis.

It is seen that many technologies are being pursued to develop novel glucose
sensors (as shown in the Fig. 2.48), including non-invasive, continuous monitors etc.

2.6.2.4 Challenges of glucose sensors and motivation of planar waveguide sensor
with Lab-on-chip for glucose concentration measurement

Major advances have been made to enhance functionality of measuring devices for
glucose level detection. Despite the impressive advances, it is seen that there are still
many challenges related to the achievement of stable and reliable glycemic monitoring.
Desirable features of such a sensor system are accuracy, reliability, ultra sensitivity, fast
response and of course low cost per test. Further, it is very much important that the
sensor system is user-friendly and give very accurate results with high sensitivity with
very minimal sample. This is one of the reasons that drive the thirst towards the
development of integrated devices.

In US patent 6,497,845 [188] issued on behalf of Roche, in December of 2002, an
invention is described including a storage container for holding analytical devices (an
integrated device). This invention became a commercial product after a couple of years
with the launch of Accu-Chek Compact Plus. This device is a blood glucose monitoring
system based on reflectometric technology. The system consists of a meter and dry
reagent test strips designed for capillary blood glucose testing by people with diabetes
or by health care professionals. Compact Plus uses drums with 17 test strips, and the
meter is automatically calibrated by inserting a new drum. An electronic check is
performed automatically and a test strip is pushed forward when the meter is turned on
with a button. The system requires a blood volume of 1.5 µL and provides a result
within 5 seconds. The test principle of Compact Plus relies on the reaction of glucose
oxidase with pyrroloquinolone quinone (PQQ). An indicator changes from yellow to
blue by means of a mediator and a redox-process. The blue color is read
reflectometrically. The meter has the capacity to store 300 results in memory. Accu-
Chek Softclix Plus lancet pen is fastened to the Compact Plus meter. The lancet pen can
be used either when fastened to the meter or it can be taken off the meter.
A method and apparatus for handling multiple sensors in a glucose monitoring instrument system is described in US patent 5,510,266 [189] issued in April of 1996, in favor of Bayer. The invention is generally related to a glucose monitoring system and, more particularly, to an improved device for handling multiple sensors that are used in analyzing blood glucose. This invention became a reality in 2003, with the launch of Ascencia Dex, which was the first blood glucose monitor to store multiple strips inside the meter. This device was very easy to use and its integration reduced incorrect results due to the human error. The integration of the test strips in the device was a major innovation, resulting in significant profit to the companies. This is one of the reasons that these patents became a subject of litigation between Roche and Bayer, since there is an apparent similarity between the drum and the disk that Accu-Chek Compact and Ascensia Dex have.

Another challenge that glucose sensors manufacturers had to face is the many manual operating steps in conventional lancet systems (lancet and lancing device), which is obviously disadvantageous to the user. In most of the systems that are available at present, the lancets for use in lancing devices are provided in a loose form and for each lancing process, the user manually removes a lancet from a pack and has to insert it into the lancet holder of the lancing device and fix it there. Numerous attempts to eliminate the above disadvantage have been described. In US patent 6,616,616 [190], issued in September 2003, Roche describes an invention concerning a lancet system comprising a plurality of essentially needle-shaped lancets, a drive unit which has a drive element in order to move the lancet from the resting position into the lancing position, a storage area to store the lancets, a withdrawal area to guide at least the tip of the lancet out of the system during the lancing process and a transport unit which can transport lancets from the storage area into the withdrawal area. The above invention became a reality in 2004, with the launch of the MultiClix. MultiClix is now one of the most popular lancing devices. It is the only one with a six-lancet drum, combining safety and convenience, since no handling of lancets is necessary. It also provides 11 penetration depth settings, letting the patient adjust the penetration according to his skin type, reducing by this way the pain by avoiding contact with deeper nerves.
Online monitoring of glucose level in diabetes management is certainly a major challenge in the field of clinical diagnostics. In this respect, researchers have demonstrated many techniques for glucose level detection. At the same time, it is seen that nowadays commercial blood glucose meters are also produced by many companies worldwide and the major players are Roche Diagnostics, LifeScan, Abbott and Bayer who mostly employ mediated amperometric biosensor technology. Other alternative include minimally invasive testing meters and continuous glucose monitoring. We see that as this field enters the area of intense research, the huge demand is creating the need for the development of new approaches with enhanced sensitivity. The trend towards the development of a sensor system with high sensitivity is expected to greatly improve the control and management of diabetes in the very near future. For accurate rapid online measurement of glucose concentration from blood plasma, it requires the followings:

- High sensitivity
- Minimal sample volume
- Accurate/online separation of blood plasma
- Low response time sensor
- Use of low cost material for fabrication of planar waveguide sensor
- Use of conventional IC process technology for fabrication in order to mass production

Keeping all these requirements in mind we have tried to use our proposed planar waveguide sensor (as mentioned in Chapter-3) for rapid measurement of glucose concentration from blood plasma (which can be transferred to waveguide sensor with capillary pressure obtained for Lab-On-Chip) and reported in Chapter-5.

2.7 Conclusion

In this chapter, a review study on optical sensors that use light to convert bio/chemical processes into a detectable signal has been done as demonstrated by different authors. We have shown how sensitivity is related to the limit of detection (LOD), which is defined as the minimum amount of concentration or mass of the biochemical substance that can be detected by the sensor over the background signal. A mathematical
description of wave propagation in planar waveguide using Maxwell's equation has been made to explain evanescent wave sensing phenomenon. For finding the propagation constant, a brief review on different numerical methods like Simple Effective Index Method (SEIM), Finite Element Method (FEM), Finite Difference Time Domain (FDTD) method and Beam Propagation Method (BPM) has also been done. Since, SiO₂/SiON has been used as the waveguide material for fabricating the optical sensor, in this context a comparative study also has been done with other waveguide material such as SOI, SiO₂/SiO₂-GeO₂, Ti: LiNbO₃, GaAsInP/InP and polymeric materials. From the relevant literature survey done in this chapter, it is found that optical sensors based on planar waveguide platform offers the viable advantage of the better control of light path by the use of the optical waveguides, and a reduced size with high sensitivity compared to the conventional existing sensors. So, it is required to use optical waveguide sensors with larger sensor area and requirement of minimal sample volume and detection time. We have tried to propose and use waveguide sensors with the above characteristics for application of adulteration of petroleum products and glucose level detection in blood sample.

2.8 List of References

112. Biswas, D. Consequences of fuel adulteration.

http://cpcbenvis.nic.in/newsletter/fueladultration/ch60703.htm

122. Kishor, K., et al., Optical sensor for the determination of adulteration in petrol: design and development, in Novel Optical Systems Design and Optimization XIV (2011), San Diego, California, USA.
