TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>List of Tables</th>
<th>i-ii</th>
</tr>
</thead>
<tbody>
<tr>
<td>List of Figures</td>
<td>iii-iv</td>
</tr>
<tr>
<td>List of Abbreviations</td>
<td>v-vii</td>
</tr>
<tr>
<td>Abstract</td>
<td>viii-x</td>
</tr>
</tbody>
</table>

Chapter 1: Introduction and Aims of the Study

1.1. Introduction

1.2. Aim and the objectives of the study

Chapter 2: Review of Literature

1. Epilepsy
 1.1. Epidemiology in India and world
 1.2. Social and economic impact
 1.3. Diagnosis and classification
 1.4. Pathophysiology/Neurobiology of epilepsy
 1.4.1. Action potential
 1.5. Epilepsy genetics
 1.5.1. Presynapse: SVC
 1.5.2. Post-synapse: Ion channels and their functionally related genes
 2. Treatment
 2.1. Pharmacological
 2.1.1. 1st Generation AEDs
 2.1.2. 2nd Generation AEDs
 2.1.3. 3rd Generation AEDs
 2.1.4. Non-Pharmacological
 2.2. Surgery, resective, vagus nerve stimulation, gene therapy
 3. Response to AEDs
4. Epilepsy pharmacogenetics
 4.1. DME’s
 4.2. Transporters
 4.3. Targets
 4.4. Other pathophysiology genes
 4.4.1. SVC

Chapter 3: Materials and Methods

1. Study participants
 1.1. Screening enrollment and phenotyping of patients
 1.2. Quantitation of AEDs in serum samples
2. Genes and SNP prioritization
3. Genotyping of genetic variants
 3.1. Genomic DNA isolation
 3.2. Genotyping of genetic markers unlinked to epilepsy
 3.3. Genotyping of genetic markers prioritized for the study
 3.4. Sequenom
 3.4.1. Assay design
 3.4.2. Genotyping protocol
 3.4.3. MALDI-TOF MS analysis
3.5. SNaPshot
 3.5.1. Reaction product purification through CIP treatment
3.6. Sequencing
4. Genotype-phenotype association analysis
 4.1. Population stratification
 4.2. Interaction analysis
 4.3. Statistical analysis

Chapter 4: Results and Discussion

1. Demographic characteristics at the time of enrollment
2. Test for population stratification among patients and healthy controls
3. Demographic and clinical characteristics at the end of the study duration
4. Demographic and clinical characteristics of cases employed for genotype-phenotype correlation
5. Genotype-Phenotype association analysis for drug response prediction 64
 5.1. Analysis of epilepsy pathophysiology genes for their influence on seizure control, dose and drug levels 64
 5.1.1. Single locus analysis 64
 5.1.2. Haplotype and diplotype analysis 69
 5.1.3. Association analysis of genetic variants with dose drug levels 72
 5.2. Study the role of genetic variants from drug metabolizing enzymes, transporters and targets based on the drug mode of action 77
 5.2.1. Single locus analysis 77
 5.2.2. Haplotype and diplotype analysis 79
 5.2.3. Association analysis of genetic variants with dose and drug levels 80
5.2. Demographic and clinical characteristics of the participants for case-control association analysis 81
6. Case-control association analysis: Role of epilepsy pathophysiology genes in epilepsy manifestation of patients 83
 7.1. Single locus analysis 83
 7.2. Haplotype and diplotype analysis 85
 7.3. Interaction analysis: MDR 87

Chapter 5: Summary and Conclusions 93-96

Bibliography 97-113

Appendices 114-123

List of Publications 124-126