REFERENCES

(Note: The papers are referred to by the Author(s) name and the year of publication. Since all the papers are published in this century only, the century index, '19', is omitted.)

ACM-CS ACM Computing Surveys
ACM-TG ACM Transactions on Graphics
CACM Communications of the ACM
CGIP Computer Graphics and Image Processing
CJ The Computer Journal
CVGIP Computer Vision, Graphics, and Image Processing
IEEE-PAMI IEEE Transactions on Pattern Analysis and Machine Intelligence
IEEE-RA IEEE journal of Robotics and Automation
IEEE-SE IEEE Transactions on Software Engineering
IEEE-TC IEEE Transactions on Computers
IPL Information Processing Letters
JACM Journal of the ACM
PRL Pattern Recognition Letters


Bentley, J.L. 75. Multidimensional binary search trees used for associative searching. CACM, 18, 9, pp 509-517.


Gargantini, I. 82a. An efficient way to represent quadtrees. CACM, 25, 12, pp 905-910.


Gargantini, I. 82c. Linear octrees for fast processing of three dimensional objects. CGIP, 20, pp 356-374.

Gargantini, I. 83. Translation, rotation, and superposition of linear quadtrees. Intnl J of Man-Mach stud., 18, pp 253-263.


Hunter, G.M. and Steiglitz, K. 79b. Linear transformations of pictures represented by quadtrees. CGIP, 10, pp 289-296.


Knuth, D.E. 73. The art of computer programming, vol 3: Sorting and Searching, Reading (Mass), Addison Wesley


Lavakusha, Arun K. Pujari. and P.G. Reddy. 87. Polygonal representation by Edge k-d trees. Communicated to PRL.


Li, M., Grosky, W.I. and Jain, R. 82. Normalized quadtrees with respect to translations. CGIP, 20, 1, pp 72-81.

Matsuyama, T., Hao, L.V., and Nagao, M. 84. A file organization for geographic information system based on spatial proximity. CVGIP, 26, pp 303-318.


Merrill, R.D. 73. Representation of contours and regions for computer search. CACM, 16, 2, pp 69-82.


Murphy, O.J. and Selkow, S.M. 86. The efficiency of using k-d trees for finding nearest neighbour in discrete space. IPL, 23, pp 215-218.


Orenstein, J.A. 82. Multidimensional tries used for associative searching. IPL, 14, 4, pp 150-157.


O'Rourke, J. and Badler, N. 77. Decomposition of 3D objects into spheres. IEEE-PAMI, 1, pp 295-305.


Pfaltz, J.L. and Rosenfeld, A. 67. Computer representation of planar regions by their skeletons. CACM, 10,2, pp 119-122 and 125.

Potemsil, M. 85. Generating octree models of 3-D objects from their silhouettes in a sequence of images. Technical Memo, AT & T Bell Labs.


Rosenfeld, A. 80. Three dimensional digital topology. TR-926, Computer Science Center, Univ of Maryland, College Park.


Samet, H. 83 A quadtree medial axis transform. CACM, 26, 9, pp 680-693.


Samet, H. 84b. Algorithms for the conversion of quadtrees to rasters. CVGIP, 26, pp 1-16.


Samet, H. and Tamminen, M. 84. Efficient image component labelling. TR-1420, Computer Science Department, Univ of Maryland, College Park. MD.

Scott, D.S. and Iyengar, S. 84. TID - A translation invariant data structure for storing images. TR 84-027, Dept of Comp Sci., Univ of Texas at Austin.


Shneider, M. 81a. Two hierarchical linear feature representations: Edge pyramids and edge quadtrees. CGIP, 17, 3, pp 211-224.


Simmons, G.F. 63. Introduction to topology and modern analysis, New York, Mc Graw-hill.


Van Lierop, M.L.P. 86. Geometrical transformations on pictures represented by leafcodes. CVGIP, 33, pp 81-98.


Warnock, J.L. 69. A hidden surface algorithm for computer generated half-tone pictures. TR 4-15, Comp Sc Deptt, Univ of Utah, Salt Lake City.


Woodwark, J.R. 82. The explicit quadtree as a structure for computer graphics. CJ, 25, 2, pp 235-238.

