List of Figures:

Figure 1.1: Digital control of a continuous time plant
Figure 1.2: Hurwitz stability region for the poles in the complex z and γ-plane
Figure 1.3: Mapping of negative real axis of the s-plane to the γ-plane
Figure 1.4: Mapping the loci of poles with constant real part in the s-plane to the γ-plane
Figure 1.5: Mapping the loci of poles with constant damping ratio in the s-plane and the loci they map into the γ-plane
Figure 1.6: Mapping the loci of poles with constant damped natural frequency in the s-plane and the loci they map into the γ-plane
Figure 1.7: Mutual relationships between time and complex s, z and delta domain
Figure 1.8: Flowchart of simple GA approach to find optimal frequency point
Figure 1.9: Roulette-Wheel marked for five frequency points according to their fitness value
Figure 2.1: Poles and Zeros location of the reference model
Figure 2.2: Step response of the reference model with ρ = -40°
Figure 2.3: Impulse response of the reference model with ρ = -40°
Figure 2.4: Pole Zero plot of the Reference Model with ρ = -40° in delta domain
Figure 2.5: Magnitude and Phase plot of the reference model with ρ = -40°
Figure 2.6: Nyquist plot of the reference model with ρ = -40°
Figure 2.7: Nichols plot of the reference model with ρ = -40°
Figure 2.8: Step responses of the reference model with different +ρ
Figure 2.9: Step responses of the reference model with different - ρ
Figure 2.10 Step responses of the reference model with different ranges of - ρ to + ρ
Figure 2.11 Pole Zero Plot of the reference model with ρ = + 80° to - 45°
Figure 2.12 Pole Zero Plot of the reference model with ρ = + 60° and different range of ωΔ
Figure 2.13 Pole Zero Plot of the reference model with ρ = -45° and different range of ωΔ
Figure 2.14 Step response of the reference model with different range of ωΔ
Figure 2.15 Pole Zero Plot of the reference model with ρ = -20° and ξ in the range of 0.3 to 0.9
Figure 3.1 Standard unity negative feedback sampled data configuration
Figure 3.2 Delta domain representation of figure 3.1
Figure 3.3 Reference model of closed loop system in delta domain
Figure 3.4 Equivalent open loop system of figure 3.3
Figure 3.5: Flow chart of steps to compute OGDTM
Figure 3.6: Pole zero plot of given plant in delta domain with $\Delta=0.1$ sec
Figure 3.7: Pole zero plot of closed loop system with $\Delta=0.1$, $\omega_n=0.84$ rad/sec, $\xi=0.7$, $\rho=+50^\circ$
Figure 3.8: Step responses of reference model, open loop and closed loop plant with PID controller with $\Delta=0.1$ sec, $\omega_n=0.84$ rad/sec, $\xi=0.7$, $\rho=+50^\circ$
Figure 3.9: Pole zero plot of closed loop system in delta domain with $\Delta=0.1$, $\omega_n=0.84$ rad/sec, $\xi=0.7$, $\rho=+20^\circ$
Figure 3.10: Step responses of reference model, open loop and closed loop plant with PID controller with $\Delta=0.1$ sec, $\omega_n=0.84$ rad/sec, $\xi=0.7$, $\rho=+20^\circ$
Figure 3.11: Pole zero plot of closed loop system in delta domain with $\Delta=0.1$, $\omega_n=0.84$ rad/sec, $\xi=0.7$, $\rho=-20^\circ$
Figure 3.12: Step responses of reference model, open loop and closed loop plant with PID controller with $\Delta=0.1$ sec, $\omega_n=0.84$ rad/sec, $\xi=0.7$, $\rho=-20^\circ$
Figure 3.13: Pole zero plot of closed loop system in delta domain with $\Delta=0.1$, $\omega_n=0.84$ rad/sec, $\xi=0.7$, $\rho=-40^\circ$
Figure 3.14: Step responses of reference model, open loop and closed loop plant with PID controller with $\Delta=0.1$ sec, $\omega_n=0.84$ rad/sec, $\xi=0.7$, $\rho=-40^\circ$
Figure 3.15: Step responses of reference model, open loop and closed loop plant with PID controller with $\Delta=0.01$ sec, $\omega_n=0.84$ rad/sec, $\xi=0.7$, $\rho=-40^\circ$
Figure 3.16: Step responses of reference model, open loop and closed loop plant with PID controller with $\Delta=0.001$ sec, $\omega_n=0.84$, $\xi=0.7$, $\rho=-40^\circ$
Figure 3.17: Nyquist plots of reference model, open loop and closed loop plant with PID controller with $\Delta=0.1$ sec, $\omega_n=0.84$ rad/sec, $\xi=0.7$, $\rho=-40^\circ$
Figure 3.18: Step responses of reference model, open loop and closed loop plant with PID controller with $\Delta=0.01$ sec, $\omega_n=0.84$ rad/sec, $\xi=0.7$, $\rho=-40^\circ$
Figure 3.19: Step responses of reference model, open loop and closed loop plant with PID controller with $\Delta=0.01$ sec, $\omega_n=0.84$ rad/sec, $\xi=0.7$, $\rho=+20^\circ$
Figure 3.20: Step responses of reference model, open loop and closed loop plant with PID controller with $\Delta=0.1$ sec, $\omega_n=0.84$ rad/sec, $\xi=0.7$, $\rho=-40^\circ$
Figure 3.21: Step responses of reference model, open loop and closed loop plant with PID controller with $\Delta=0.1$ sec, $\omega_n=0.84$ rad/sec, $\xi=0.7$, $\rho=+20^\circ$
Figure 3.22: Step responses of reference model, open loop and closed loop plant with PID controller with $\Delta=0.1$, $\rho=+30^\circ$
Figure 3.23: Step responses of reference model, open loop and closed loop plant with PID controller with $\Delta=0.1$, $\rho=+10^\circ$
Figure 3.24: Step responses of reference model, open loop and closed loop plant with PID controller with $\Delta=0.1$, $\rho=-20^\circ$
Figure 3.25: Step responses of reference model, open loop and closed loop plant with PID controller with $A=0.1$, $\rho=-40^\circ$

Figure 3.26: Step responses of reference model, open loop and closed loop plant with PID controller with $A=0.1$, $\rho=-40^\circ$, $\xi=0.5$

Figure 3.27: Nyquist plot of plant, Reference model and plant with PID controller for $A=0.1$, $\rho=-40^\circ$, $\xi=0.7$

Figure 3.28: Step responses with $A=0.01$ sec, $\rho=+20^\circ$ and $\omega_n=0.5$ rad/sec

Figure 3.29: Step responses of plant, reference model and closed loop plant with $A=0.01$ sec, $\rho=-40^\circ$ and $\omega_n=0.5$ rad/sec

Figure 3.30: Step responses of plant, reference model and closed loop plant with $A=0.01$ sec, $\rho=+40^\circ$ & $\omega_n=0.84$ rad/sec

Figure 3.31: Step responses of plant, reference model and closed loop plant with $A=0.01$ sec, $\rho=-40^\circ$ & $\omega_n=0.84$ rad/sec

Figure 3.32: Step responses of plant, reference model and closed loop plant with $A=0.01$ sec, $\rho=+50^\circ$ & $\omega_n=0.5$ rad/sec

Figure 3.33: Step responses of plant, reference model and closed loop plant with $A=0.01$ sec, $\rho=-50^\circ$ & $\omega_n=0.5$ rad/sec

Figure 3.34: Step responses of plant, reference model and closed loop plant with $A=0.01$ sec, $\rho=-20^\circ$ & $\omega_n=0.5$ rad/sec

Figure 3.35: Step responses of plant, reference model and closed loop plant with $A=0.01$ sec, $\rho=+40^\circ$ & $\omega_n=0.5$ rad/sec

Figure 4.1: Standard unity negative feedback system

Figure 4.2: Reference Model for desired closed-loop control system

Figure 4.3: Step responses of plant, reference model and closed loop system with PI controller using OGTM, output y_{11}, $\Delta=0.1$ sec and $\rho=-40^\circ$

Figure 4.4: Step responses of plant, reference model and closed loop system with PI controller using OGTM, output y_{12}, $\Delta=0.1$ sec and $\rho=-40^\circ$

Figure 4.5: Step responses of plant, reference model and closed loop system with PI controller using OGTM, output y_{21}, $\Delta=0.1$ sec and $\rho=-40^\circ$

Figure 4.6: Step responses of plant, reference model and closed loop system with PI controller using OGTM, output y_{22}, $\Delta=0.1$ sec and $\rho=-40^\circ$

Figure 4.7: Control Efforts U_{11}, U_{12}, U_{21}, U_{22} with PI controller using OGTM, $\Delta=0.1$ sec and $\rho=-40^\circ$

Figure 4.8: Step responses of plant, reference model and closed loop system with PI controller using OGTM, output y_{11}, $\Delta=0.1$ sec and $\rho=+40^\circ$

Figure 4.9: Step responses of plant, reference model and closed loop system with PI controller using OGTM, output y_{12}, y_{21}, $\Delta=0.1$ sec and $\rho=+40^\circ$

Figure 4.10: Step responses of plant, reference model and closed loop system with PI controller using OGTM, output y_{22}, $\Delta=0.1$ sec and $\rho=+40^\circ$
Figure 4.1: Control Efforts $U_{11}, U_{12}, U_{21}, U_{22}$ with PI controller using OGTM, $\Delta = 0.1$ sec and $\rho = +40^\circ$

Figure 4.12: Step responses of plant, reference model and closed loop system with PI controller using OGTM, output $y_{11}, \Delta = 0.1$ sec and $\rho = -40^\circ$

Figure 4.13: Step responses of plant, reference model and closed loop system with PI controller using OGTM, output $y_{12}, \Delta = 0.1$ sec and $\rho = -40^\circ$

Figure 4.14: Step responses of plant, reference model and closed loop system with PI controller using OGTM, output $y_{21}, \Delta = 0.1$ sec and $\rho = -40^\circ$

Figure 4.15: Step responses of plant, reference model and closed loop system with PI controller using OGTM, output $y_{22}, \Delta = 0.1$ sec and $\rho = -40^\circ$

Figure 4.16: Control Efforts $U_{11}, U_{12}, U_{21}, U_{22}$ with PI controller using OGTM, $\Delta = 0.1$ sec and $\rho = -40^\circ$

Figure 4.17: Step responses of plant, reference model and closed loop system with PI controller using OGDTM, output $y_{11}, y_{12}, y_{13}, y_{14}, y_{21}, y_{22}, y_{23}, y_{24}, \Delta = 0.1$ sec and $\rho = -40^\circ$

Figure 4.18: Step responses of plant, reference model and closed loop system with PI controller using OGDTM, output $y_{31}, y_{32}, y_{33}, y_{34}, y_{41}, y_{42}, y_{43}, y_{44}, \Delta = 0.1$ sec and $\rho = -40^\circ$

Figure 4.19: Step responses of plant, reference model and closed loop system with PI controller using OFF method, output $y_{11}, \Delta = 0.1$ sec and $\rho = -45^\circ$

Figure 4.20: Step responses of plant, reference model and closed loop system with PI controller using OFF method, output $y_{12}, \Delta = 0.1$ sec and $\rho = -45^\circ$

Figure 4.21: Step responses of plant, reference model and closed loop system with PI controller using OFF method, output $y_{21}, \Delta = 0.1$ sec and $\rho = -45^\circ$

Figure 4.22: Step responses of plant, reference model and closed loop system with PI controller using OFF method, output $y_{22}, \Delta = 0.1$ sec and $\rho = -45^\circ$

Figure 4.23: Control Efforts $U_{11}, U_{12}, U_{21}, U_{22}$ with PI controller using OFF method, $\Delta = 0.1$ sec and $\rho = -45^\circ$

Figure 4.24: Step responses of plant, reference model and closed loop system with PI controller using OFF method, output $y_{11}, \Delta = 0.1$ sec and $\rho = -40^\circ$

Figure 4.25: Step responses of reference model and closed loop system with PI controller using OFF method, output $y_{11}, \Delta = 0.1$ sec and $\rho = -40^\circ$

Figure 4.26: Step responses of reference model and closed loop system with PI controller using OFF method, output $y_{12}, \Delta = 0.1$ sec and $\rho = -40^\circ$

Figure 4.27: Step responses of reference model and closed loop system with PI controller using OFF method, output $y_{21}, \Delta = 0.1$ sec and $\rho = -40^\circ$

Figure 4.28: Step responses of reference model and closed loop system with PI controller using OFF method, output $y_{22}, \Delta = 0.1$ sec and $\rho = -40^\circ$

Figure 4.29: Control Efforts $U_{11}, U_{12}, U_{21}, U_{22}$ with PI controller using OFF method, $\Delta = 0.1$ sec and $\rho = -40^\circ$
Figure 4.30: Step responses of reference model and closed loop system with PI controller using OFF method, output \(y_{11},y_{12},y_{13},y_{14},y_{21},y_{22},y_{23},y_{24}, \Delta = 0.1 \) sec and \(\rho = -40^\circ \)

Figure 4.31: Step responses of reference model and closed loop system with PI controller using OFF method, output \(y_{31},y_{32},y_{33},y_{34},y_{41},y_{42},y_{43},y_{44}, \Delta = 0.1 \) sec and \(\rho = -40^\circ \)

Figure 4.32: Control Efforts using OFF method, \(u_{11},u_{12},u_{13},u_{14},u_{21},u_{22},u_{23},u_{24} \), \(\Delta = 0.1 \) sec, \(\rho = -40^\circ \)

Figure 5.1: Step responses of Reference model with and without time delay with \(\omega_n=10 \) rad/sec, \(\xi=0.5, \) Sampling time 0.5 sec and time delay 1 sec

Figure 5.2: Step responses of Reference model with and without time delay with \(\omega_n=10 \) rad/sec, \(\xi=0.5, \) Sampling time 0.1 sec and time delay 1 sec

Figure 5.3: Step responses of Reference model with and without time delay with \(\omega_n=0.84 \) rad/sec, \(\xi=0.7, \) Sampling time 0.1 sec and time delay 1 sec

Figure 5.4: Step responses of Ref. model and closed loop plant with PID Controller for \(\rho= -40^\circ, \omega_n=10 \) rad/sec, \(\xi=0.5, \Delta= 0.2 \) sec and time delay 1 sec

Figure 5.5: Step responses of Ref. model and closed loop plant with PID Controller for \(\rho= +40^\circ, \omega_n=10 \) rad/sec, \(\xi=0.5, \Delta= 0.2 \) sec and time delay 1 sec

Figure 5.6: Step responses of Ref. model and closed loop plant with PID Controller for \(\rho= -40^\circ, \omega_n=10 \) rad/sec, \(\xi=0.5, \Delta= 0.5 \) sec and time delay 1 sec

Figure 5.7: Step responses of Ref. model and closed loop plant with PID Controller for \(\rho= +40^\circ, \omega_n=10 \) rad/sec, \(\xi=0.5, \Delta= 0.5 \) sec and time delay 1 sec

Figure 5.8: Step responses of Ref. model and closed loop plant with PID Controller for \(\rho= 50^\circ, \omega_n=10 \) rad/sec, \(\xi=0.5, \Delta= 1 \) sec and time delay 1 sec

Figure 5.9: Step responses of Ref. model and closed loop plant with PID Controller for \(\rho= +50^\circ, \omega_n=10 \) rad/sec, \(\xi=0.5, \Delta= 1 \) sec and time delay 1 sec

Figure 5.10: Step responses of Ref. model and closed loop plant with PID Controller for \(\rho= -40^\circ, \omega_n=0.84 \) rad/sec, \(\xi=0.7, \Delta= 0.5 \) sec using OGDTM

Figure 5.11: Step responses of Ref. model and closed loop plant with PID Controller for \(\rho= +40^\circ, \omega_n=0.84 \) rad/sec, \(\xi=0.7, \Delta= 0.5 \) sec using OGDTM

Figure 5.12: Step responses of Ref. model and closed loop plant with PI Controller for \(\rho= -40^\circ, \omega_n=0.84 \) rad/sec, \(\xi=0.7, \Delta= 0.5 \) sec using OGDTM

Figure 5.13: Step responses of Ref. model and closed loop plant with PI Controller for \(\rho= -40^\circ, \omega_n=0.2 \) rad/sec, \(\xi=0.8, \Delta= 0.1 \) sec using OGDTM

Figure 5.14: Step responses of Ref. model and closed loop plant with PI Controller for \(\rho= -40^\circ, \omega_n=0.2 \) rad/sec, \(\xi=0.8, \Delta= 0.1 \) sec using OGDTM

Figure 5.15: Step responses of Ref. model and closed loop plant with PI Controller for \(\rho= -40^\circ, \omega_n=0.2 \) rad/sec, \(\xi=0.8, \Delta= 0.5 \) sec using OGDTM

Figure 5.16: Step responses of Ref. model and closed loop plant with PID Controller for \(\rho= -40^\circ, \omega_n=0.2 \) rad/sec, \(\xi=0.8, \Delta= 0.5 \) sec using OGDTM
Figure 5.17: Step responses of Ref. model and closed loop plant with PID Controller for $p=+40^\circ$, $\omega_n=0.2$ rad/sec, $\xi=0.8$, $\Delta=0.5$ sec using OGDTM

Figure 5.18: Step responses of Ref. model and closed loop plant with PI Controller for $p=-40^\circ$, $\omega_n=0.1$ rad/sec, $\xi=0.8$, $\Delta=0.5$ sec using OGDTM

Figure 5.19: Step responses of Ref. model and closed loop plant with PID Controller for $p=-40^\circ$, $\omega_n=0.1$ rad/sec, $\xi=0.8$, $\Delta=0.5$ sec using OGDTM

Figure 5.20: Step responses of Ref. model and closed loop plant with PI Controller for $p=+40^\circ$, $\omega_n=0.3$ rad/sec, $\xi=0.7$, $\Delta=0.5$ sec using OFF method

Figure 5.21: Step responses of Ref. model and closed loop plant with PID Controller for $p=+40^\circ$, $\omega_n=0.3$ rad/sec, $\xi=0.7$, $\Delta=0.5$ sec using OFF method

Figure 5.22: Step responses of Ref. model and closed loop plant with PI Controller for $p=-40^\circ$, $\omega_n=0.3$ rad/sec, $\xi=0.7$, $\Delta=0.5$ sec using OFF method

Figure 5.23: Step responses of Ref. model and closed loop plant with PID Controller for $p=-40^\circ$, $\omega_n=0.1$ rad/sec, $\xi=0.8$, $\Delta=1$ sec using OGDTM

Figure 5.24: Step responses of Ref. model and closed loop plant with PID Controller for $p=+20^\circ$, $\omega_n=0.3$ rad/sec, $\xi=0.7$, $\Delta=0.5$ sec using OFF method

Figure 5.25: Step responses of Ref. model and closed loop plant with PID Controller for $p=-20^\circ$, $\omega_n=0.3$ rad/sec, $\xi=0.7$, $\Delta=0.5$ sec using OFF method

Figure 5.26: Step responses of Ref. model and closed loop plant with PID Controller for $p=-40^\circ$, $\omega_n=0.1$ rad/sec, $\xi=0.8$, $\Delta=2$ sec using OGDTM

Figure 5.27: Step responses of Ref. model and closed loop plant with PI Controller for $p=-40^\circ$, $\omega_n=0.1$ rad/sec, $\xi=0.8$, $\Delta=2$ sec using OGDTM

Figure 5.28: Step responses of various extreme plants $P_{61}(\gamma)$, $P_{62}(\gamma)$, $P_{63}(\gamma)$, $P_{64}(\gamma)$, $P_{65}(\gamma)$, $P_{66}(\gamma)P$ with nominal PI Controller using OGDTM

Figure 5.29: Step responses of Ref. model and CL nominal & extreme plants with PI Controller for $p=-40^\circ$, $\omega_n=0.11$ rad/sec, $\xi=0.8$, $\Delta=2$ sec using OGDTM

Figure 5.30: Step responses of Ref. model and CL nominal & extreme plants with PI Controller for $p=-20^\circ$, $\omega_n=0.11$ rad/sec, $\xi=0.8$, $\Delta=2$ sec using OGDTM

Figure 5.31: Step responses of Ref. model and CL nominal & extreme plants with PI Controller for $p=+20^\circ$, $\omega_n=0.11$ rad/sec, $\xi=0.8$, $\Delta=2$ sec using OGDTM

Figure 5.32: Step responses of Ref. model and CL nominal & extreme plants with PI Controller for $p=+40^\circ$, $\omega_n=0.11$ rad/sec, $\xi=0.8$, $\Delta=2$ sec using OGDTM

Figure 5.33: Step responses of Ref. model and CL nominal & extreme plants with PI Controller for $p=+40^\circ$, $\omega_n=0.11$ rad/sec, $\xi=0.8$, $\Delta=2$ sec using OGDTM

Figure 5.34: Step responses of Ref. model and CL nominal & extreme plants with -30% varied parameter nominal PI Controller for $p=-40^\circ$, $\omega_n=0.11$ rad/sec, $\xi=0.8$, $\Delta=2$ sec using OGDTM
Figure 5.35: Step responses of Ref. model and closed loop nominal & extreme plants with -20% varied parameter nominal PI Controller for $\rho = -40^\circ$, $\omega_n=0.11$ rad/sec, $\xi=0.8$, $\Delta=2$ sec using OGDTM

Figure 5.36: Step responses of Ref. model and closed loop nominal & extreme plants with -10% varied parameter nominal PI Controller for $\rho = -40^\circ$, $\omega_n=0.11$ rad/sec, $\xi=0.8$, $\Delta=2$ sec using OGDTM

Figure 5.37: Step responses of Ref. model and closed loop nominal & extreme plants with +10% varied parameter nominal PI Controller for $\rho = -40^\circ$, $\omega_n=0.11$ rad/sec, $\xi=0.8$, $\Delta=2$ sec using OGDTM

Figure 5.38: Step responses of Reference model and closed loop nominal & extreme plants with +20% varied parameter nominal PI Controller for $\rho = -40^\circ$, $\omega_n=0.11$ rad/sec, $\xi=0.8$, Sampling time $\Delta=2$ sec using OGDTM

Figure 5.39: Step responses of Reference model and closed loop nominal & extreme plants with +30% varied parameter nominal PI Controller for $\rho = -40^\circ$, $\omega_n=0.11$ rad/sec, $\xi=0.8$, Sampling time $\Delta=2$ sec using OGDTM

Figure 5.40: Step responses of the reference model and closed loop plant with PI controller using OGDTM, output $y_{11}, y_{12}, y_{21}, y_{22}$, $\Delta=1$ sec, $\rho=-40^\circ$, $\omega_n=0.2$ rad/sec & $\xi=0.8$

Figure 5.41: Step responses of Control effort using OGDTM, $u_{11}, u_{12}, u_{21}, u_{22}$, $\Delta=1$ sec, $\rho=-40^\circ$, $\omega_n=0.2$ rad/sec & $\xi=0.8$

Figure 5.42: Step responses of the reference model and closed loop plant with PI controller using OGDTM, output $y_{11}, y_{12}, y_{21}, y_{22}$, $\Delta=1$ sec, $\rho=-40^\circ$, $\omega_n=0.3$ rad/sec & $\xi=0.8$

Figure 5.43: Step responses of Control effort using OGDTM, $u_{11}, u_{12}, u_{21}, u_{22}$, $\Delta=1$ sec, $\rho=-40^\circ$, $\omega_n=0.3$ rad/sec & $\xi=0.8$

Figure 5.44: Step responses of the ref. model and CL plant with PI controller using OFF method, output $y_{11}, y_{12}, y_{21}, y_{22}$, $\Delta=1$ sec, $\rho=-40^\circ$, $\omega_n=0.2$ rad/sec & $\xi=0.8$

Figure 5.45: Step responses of Control effort using OFF method, $u_{11}, u_{12}, u_{21}, u_{22}$, $\Delta=1$ sec, $\rho=-40^\circ$, $\omega_n=0.2$ rad/sec & $\xi=0.8$

Figure 5.46: Step responses of the ref. model and CL plant with PI controller using OFF method, output $y_{11}, y_{12}, y_{21}, y_{22}$, $\Delta=1$ sec, $\rho=-40^\circ$, $\omega_n=0.28$ rad/sec & $\xi=0.7$

Figure 5.47: Step responses of Control effort using OFF method, $u_{11}, u_{12}, u_{21}, u_{22}$, $\Delta=1$ sec, $\rho=-40^\circ$, $\omega_n=0.28$ rad/sec & $\xi=0.7$

Figure 6.1: Construction of delay in delta domain

Figure 6.2: Pole clustering of 3rd order Butterworth IIR digital filter in z-domain

Figure 6.3: Pole-zero plot of 3rd order Butterworth IIR digital filter in delta domain

Figure 6.4: Direct form digital filter implementation structures: (a) DFI (b) DFII (c) DFII (d) DFIII

Figure 6.4: Schematic representation of the chambers, valves, vessels and conduction system of the heart
Figure 6.5(a): A typical QRS wave of ECG signal
Figure 6.5(b): A typical QRS wave of ECG signal
Figure 6.6: Ventricular conduction
Figure 6.7: Einthoven’s triangle and the axes of the six ECG leads formed by using four limb leads.
Figure 6.8: Positions for placement of the chest leads V1 – V6 for acquisition of ECG
Figure 6.9: ECG signal with high frequency noise
Figure 6.10: ECG signal with low frequency artefact
Figure 6.11: ECG signal with 60 Hz power line interference
Figure 6.12: FFT of ECG signal
Figure 6.13: Signal flow diagram of Hanning filter in delta domain
Figure 6.14: Pole zero plot of Hanning filter in delta domain
Figure 6.15: Magnitude and phase response of the Hanning filter in delta domain
Figure 6.16: Filtering of ECG signal with high frequency noise using Hanning filter
Figure 6.17: FFT of ECG and filtered signal with Hanning filter
Figure 6.18: Pole zero plot of 8 point MA filter in delta domain with sampling frequency 1000 Hz
Figure 6.19: Magnitude and phase response of 8 point MA filter in delta domain
Figure 6.20: Filtering of ECG with high frequency noise using 8 point MA filter in delta domain
Figure 6.21: FFT of ECG and filtered signal with 8 point MA filter in delta domain
Figure 6.22: Magnitude and phase response of derivative based filter in delta domain
Figure 6.23: Magnitude and phase response of modified derivative based filter
Figure 6.24: Normalized magnitude and phase responses of modified derivative filter
Figure 6.25: Results of modified derivative filter to remove base line wander
Figure 6.26: Magnitude response of butterworth low pass filter in delta domain with $f_c = 40$ Hz, $f_r = 200$ Hz and N=4
Figure 6.27: Phase response of butterworth low pass filter in delta domain with $f_c = 40$ Hz, $f_r = 200$ Hz and N=4
Figure 6.28: Pole zero plot of butterworth low pass filter in delta domain with $f_c = 40$ Hz, $f_r = 200$ Hz and N=4
Figure 6.29: Processing of ECG signal with low frequency noise with butterworth low pass filter in delta domain with $f_c = 40$ Hz, $f_r = 200$ Hz and N=4
Figure 6.30: FFT of ECG and filtered signal with butterworth low pass filter in delta domain with $f_c = 40$ Hz, $f_r = 200$ Hz and N=4
Figure 6.31: Magnitude responses of butterworth low pass filter in delta domain with $f_c = 40$ Hz, $f_r = 200$ Hz and N=4, 8, 12
Figure 6.32: Location of zeros for notch filter to remove 60 Hz artifacts from ECG
Figure 6.33 Magnitude and phase response of Notch filter with sampling frequency 1000 Hz, notch frequency 60 Hz and bandwidth 4 Hz

Figure 6.34: ECG signal filtered with Notch filter in delta domain with $f_0 = 60$ Hz, $f_s = 1000$ Hz and $\Delta F = 4$ Hz

Figure 6.35: FFT of ECG signal filtered with Notch filter

List of Tables:

Table 1.1: Five individual fitness values
Table 2.1: Time domain specifications of reference model
Table 2.2: Frequency domain specifications of reference model
Table 2.3: Reference model parameters
Table 2.4: Typical design specifications
Table 2.5: Design specifications for different damping ration
Table 3.1: Transfer functions of ref model and controller for section 3.5.6.1
Table 3.2: Transfer functions of closed loop systems section 3.5.6.1
Table 3.3: Time domain specification of model, and system section 3.5.6.1
Table 3.4: Frequency domain specification of model, and system section 3.5.6.1
Table 3.5: Time and frequency domain specifications for section 3.5.6.2
Table 3.6: Transfer functions of ref model and controller for section 3.5.6.3
Table 3.7: Transfer functions of closed loop systems section 3.5.6.3
Table 3.8: Time domain specification of model, and system section 3.5.6.3
Table 3.9: Frequency domain specification of model, and system section 3.5.6.3
Table 3.10: Comparison of performance System with PID controllers
Table 5.1: Reference model transfer function with or without time delay
Table 5.2: Time and frequency domain specifications for reference model with or without time delay
Table 5.3: Comparison of performance of various closed loop systems cascaded with the desired controller
Table 5.4: Comparison of performance of various closed loop systems cascaded with the desired controller
Table 5.5: Comparison of performance of various closed loop systems cascaded with the desired controller