Chapter 5

SIGNED DOMATRIC NUMBER OF A GRAPH.
5.1 Introduction:

Various numerical invariants of graphs concerning domination were introduced by means of dominating functions and their variants. The idea of dominating function \(f : V \rightarrow \{0,1\} \) satisfying \(\sum_{u \in N(v)} f(u) \geq 1 \), for all vertices \(v \) in \(G \), is itself emerged from the definition of dominating sets by simply assigning 1 to the vertices of a dominating set \(D \) and 0 to the vertices of \(V - D \). The definition of domatic number \(d(G) \) is well known in the literature and defined as the maximum cardinality taken over all partitions in which each set is a dominating set. Now, the question is how this parameter can be looked in terms of dominating functions.

For example, consider the following graph \(G \) as shown in the Figure-5.1.

\[\text{Figure-5.1} \]
The largest domatic partition

\[P = \{ D_1 = \{ u_1, u_5 \}, D_2 = \{ u_2, u_6 \}, D_3 = \{ u_3, u_7 \}, D_4 = \{ u_4, u_8 \} \} \]

which gives us that \(d(G) = 4 \). If we look at these dominating sets \(D_i \) in terms of dominating functions, that is, \(f_i : V \rightarrow \{0, 1\} \) corresponds to the dominating set \(D_i \), for \(i = 1, 2, 3, 4 \) then for every vertex \(u_j \in D_i \), we have \(\sum_{i=1}^{4} f_i(u_j) = 1 \), since \(u_j \) is in exactly one of the sets \(D_i \), as \(D_i \) form a partition of the vertex set \(V(G) \).

In view of the above, we can redefine the concept of domatic number \(d(G) \) as the maximum number of dominating functions \(f_1, f_2, \ldots, f_d \) satisfying \(\sum_{i=1}^{d} f_i(u) = 1 \). How this idea can be extended to the set of signed dominating functions? As the signed dominating function \(f : V \rightarrow \{-1, 1\} \) involves the functional values \(+1 \) and \(-1 \), it may happen that \(\sum_{i=1}^{d} f_i(u) > 1 \), if we consider each \(f_i \) as a signed dominating function. For example, consider the graph \(G_2 \) of the Figure-5.2.

\[\text{FIGURE-5.2} \]
By the property of signed dominating functions, the vertices u_1 and u_2 must receive +1 by any signed dominating function. The only vertices which receive -1 are u_3 and u_4. Thus, there are three signed dominating functions f_1, f_2 and f_3 which assigns +1 and -1 as in the following Figure-5.3 (a)-(c) in the order given below:

FIGURE-5.3 (a), (b), (c)
Now, can we conclude the Signed domatic number \(d_s \) (let us denote it!) is three? The answer is no, since \(\sum_{i=1}^{3} f_i(u_i) = 3 > 1 \). Then again, we cannot say it is two for the same reason; but definitely, we conclude that \(d_s(G) = 1 \). This motivates L. Volkman and B. Zelinka to introduce the concept of signed domatic number denoted by \(d_s(G) \) for a graph \(G \) in [11]. They defined the signed domatic number \(d_s(G) \) as the maximum number of signed dominating functions \(f_1, f_2, ..., f_d \) on a vertex set \(V(G) \) satisfying \(\sum_{i=1}^{d} f_i(u) \leq 1 \), for all vertices \(u \) of \(G \). This can be seen in the following example. Consider the graph \(G = K_8 \) - complete graph on eight vertices.

Define a function \(f_i : V \rightarrow \{-1, 1\} \) for \(i = 1, 2, 3 \) by

- \(f_1(u_1) = f_1(u_2) = f_1(u_3) = f_1(u_4) = f_1(u_5) = f_1(u_6) = f_1(u_7) = -1 \),
- \(f_2(u_2) = f_2(u_3) = f_2(u_4) = f_2(u_5) = f_2(u_6) = f_2(u_7) = 1 \),\(f_3(u_1) = f_3(u_2) = f_3(u_3) = f_3(u_4) = f_3(u_5) = f_3(u_6) = f_3(u_7) = -1 \),
- \(f_3(u_1) = f_3(u_2) = f_3(u_3) = f_3(u_4) = f_3(u_5) = f_3(u_6) = f_3(u_7) = 1 \),\(f_3(u_1) = f_3(u_2) = f_3(u_3) = f_3(u_4) = f_3(u_5) = f_3(u_6) = f_3(u_7) = -1 \).

The assignment of +1 and −1 by \(f_i \) can be seen in the following Figure 5.4 (a)-(c).

![Graph](image.png)
Also one can easily verify that $\sum_{j=1}^{3} f_j(u) \leq 1$. Now, the question is, can we get more than three dominating functions f^*_i satisfying $\sum_{i=1}^{d \geq 4} f_i(u) \leq 1$ for every vertex u?
The answer is no! and this can be discussed later. Hence, the signed domatic number \(d_s(K_8) = 3 \). This beautiful idea of signed domatic number was introduced by L. Volkmann and B. Zelinka in [11], but no progress has been made by any researchers after this paper. This made us to consider this parameter for further investigation.

5.2 Some existing results:

L. Volkmann and B. Zelinka [11] obtained some properties of signed domatic number and also found exact value of signed domatic number \(d_s(G) \) for certain class of wellknown graphs namely, complete graphs, Cycles, Wheels and Fans. All these results, we report here.

Proposition 5.2.1 [11]: The signed domatic number \(d_s(G) \) is well-defined for each graph \(G \).

Proposition 5.2.2 [11]: Let \(G \) be a graph of order \(n \) with signed domination number \(\gamma_s(G) \) and signed domatic number \(d_s(G) \), \(\gamma_s(G)d_s(G) \leq n \).

Proposition 5.2.3 [11]: If \(G \) is a graph with minimum degree \(\delta(G) \), then

\[
1 \leq d_s(G) \leq \delta(G) + 1.
\]
PROPOSITION 5.2.4 [11]: The signed domatic number is an odd integer.

COROLLARY 5.2.4.1 [11]: If T is a tree, then $d_a(T) = 1$.

In fact, for any graph with pendant vertex has a signed domatic number one.

THEOREM 5.2.5 [11]: If $G = K_n$ is the complete graph of order n, then

- $d_s(G) = n$, if n is odd
- $d_s(G) = p$, if $n = 2p$ and p is odd
- $d_s(G) = p - 1$, if $n = 2p$ and p is even.

THEOREM 5.2.6[11]: Let C_n be a cycle of length $n \geq 3$. If n is divisible by 3, then $d_s(C_n) = 3$ and $d_s(C_n) = 1$ in the remaining cases

THEOREM 5.2.7[11]: Let G be a fan of order n. If $n = 3$, then $d_s(G) = 3$ and if $n \neq 3$, then $d_s(G) = 1$.

THEOREM 5.2.8[11]: If G is a wheel of order n, then $d_s(G) = 1$.

105
5.3 New Results:

In this section, we are going to prove $\gamma_s(G) + d_s(G) \leq n + 1$ and also $d_s(G) + d_s(G) \leq n + 1$ and also we characterise the extremal class of graphs for which both the bounds attain. Further, We consider to find the exact value of signed domatic number of a circulant graphs.

THEOREM 5.3.1: If G is a graph of order n, and $\gamma_s(G) \geq 0$ then $\gamma_s(G) + d_s(G) \leq n + 1$. Further, the equality holds if and only if G is a complete graph of odd order or G is a graph in which every vertex is a support or a pendent vertex.

PROOF: Let G be a graph of order n. The inequality follows from the fact that $a + b \leq ab + 1$, for any two non-negative integer a and b. By the Proposition 5.2.2, we have $\gamma_s(G) + d_s(G) < \gamma_s(G).d_s(G) + 1 < n + 1$.

The only thing remains to prove the equality. Suppose that,

$$\gamma_s(G) + d_s(G) = n + 1 \quad (5.1)$$

Then, $n + 1 = \gamma_s(G) + d_s(G) \leq \gamma_s(G).d_s(G) + 1 \leq n + 1$.

This implies that $\gamma_s(G) + d_s(G) = \gamma_s(G).d_s(G) + 1$.

This shows that

$$\gamma_s(G).d_s(G) = n \quad (5.2)$$
Solving (5.1) and (5.2) simultaneously, we have either
\[\gamma_s(G) = 1, \quad d_a(G) = n \quad \text{or} \quad \gamma_a(G) = n, \quad d_s(G) = 1. \]

If \(\gamma_s(G) = 1, \quad d_a(G) = n, \)

then \(n = d_s(G) \leq \delta(G) + 1 \) by the proposition 5.2.5.

Therefore, \(\delta(G) \geq n - 1 \) implies that \(\delta(G) = n - 1 \) which in turn gives that \(G \) is a complete graph. But by the Theorem 5.2.5, the order of the complete graph must be odd and hence in this case \(\gamma_s(G) = 1 \) holds. If \(\gamma_s(G) = n \) and \(d_a(G) = 1 \), then by the Corollary 5.2.4.1, \(G \) must be a graph in which every vertex is either a support or a pendant vertex.

Converse is obvious.

PROPOSITION 5.3.2: If \(\gamma_s(G) > \frac{n}{2} \) then \(d_s(G) = 1 \), where \(n \) is the order of \(G \).

PROOF: Let \(G \) be a graph of order \(n \). Suppose that \(\gamma_s(G) > \frac{n}{2} \). Then by the Proposition 5.2.2, we have

\[\frac{n}{2} d_s(G) < \gamma_s(G) d_a(G) \leq n. \]

This implies that \(d_s(G) < 2 \) which in turn implies that \(d_s(G) = 1 \).

COROLLARY 5.3.2.1: If \(G \) is a Petersen graph, then \(d_s(G) = 1 \).

PROOF: Suppose \(G \) is a Petersen graph, then by Proposition 2.4.1,

\[\gamma_s(G) = 8 > \frac{10}{2}. \]

Thus, \(d_s(G) = 1 \) follows from the above Proposition 5.3.2.
Next Theorem deals with the domatic number of a graph and that of its complement. Such results in graph theory are popularly known as Nordhaus-Gaddum type results.

Before going to prove the Nordhaus-Gaddum type result, we prove the following Lemma.

Lemma 5.3.3: If G is a non-complete regular graph of order n, then $d_s(G) < \frac{n}{2}$.

Proof: Let G be a non-complete regular graph of order n with regularity r.

We prove that $d_s(G) < \frac{n}{2}$. For if, $d_s(G) > \frac{n}{2}$, then, by the Proposition 5.2.2, we have $\frac{3}{2} \gamma_s(G) < \gamma_s(G) d_s(G) \leq n$. This implies $\gamma_s(G) < 2$ and hence $\gamma_s(G) \leq 1$.

But, we know that $\gamma_s(G) \geq \frac{n}{r+1}$, for any regular graph of degree r. Thus, $\frac{n}{r+1} \leq 1$ which gives us that $r \geq n - 1$ and in turn we conclude that G is a complete graph, a contradiction to the hypothesis; which proves the result.

With the help of above Lemma 5.3.3 and Proposition 5.2.3, we prove the following Theorem.

Theorem 5.3.4: Let G be a graph of order n, then $d_s(G) + d_s(\bar{G}) \leq n + 1$ and the equality holds if and only if G is a complete graph of odd order or G is its complement.

Proof: Let G be a graph of order n. By the Proposition 5.2.3, we have $d_s(G) \leq \delta(G) + 1$ and $d_s(\bar{G}) \leq \delta(\bar{G}) + 1$.

Thus, we have
Thus, the inequality holds.

Next, let \(d_s(G) + d_s(\overline{G}) = n + 1 \).

By the proof of the above part, we conclude that \(G \) is a regular graph. Now, we claim that \(G \) is a complete graph. For, if \(G \) is not complete and regular graph, then by the Lemma 5.3.3,

\[
d_s(G) \leq \frac{n}{2} \quad \text{and} \quad d_s(\overline{G}) \leq \frac{n}{2},
\]

which implies that

\[
n + 1 = d_s(G) + d_s(\overline{G}) \leq \frac{n}{2} + \frac{n}{2} = n,
\]

a contradiction.

But, by the **Theorem 5.3.1**, \(G \) is a complete graph of odd order and converse is obvious.

5.4 Signed domatic number of circulant graphs:

The circulant graphs are emerged from circulant matrices. An \(n \times n \) matrix \(S = [s_{ij}] \) is said to be a **Circulant matrix**, if its entries satisfy \(s_{ij} = s_{i,j-i+1} \) where the subscripts are reduced modulo \(n \) and lie in the set \(\{1, 2, 3, \ldots, n\} \). In other words, row \(i \) of \(S \) is obtained from the first row of \(S \) by a cyclic shift of \(i-1 \) steps, and so any circulant matrix is determined by its first row. If the first row of \(S \) is \((s_1, s_2, s_3, \ldots, s_{n-1}, s_n) \), then \(i^{th} \) row of \(S \) is \((s_{n-i+2}, s_{n-i+3}, \ldots, s_{n-i}, s_n) \).

The circulant graph is a graph \(G \) whose vertices can be ordered so that the adja-
The adjacency matrix $A(G)$ is a circulant matrix. For example, the graph G of the Figure 5.5, is a circulant graph.

\[
A(G) = \begin{bmatrix}
0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 1 \\
2 & 1 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
3 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\
4 & 0 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 0 & 0 \\
5 & 0 & 0 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 0 \\
6 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 1 & 1 & 0 \\
7 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 1 & 1 \\
8 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 1 \\
9 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 1 \\
10 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 \\
11 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 \\
\end{bmatrix}
\]
Which is a circulant matrix. Another way of defining circulant graph is group theoretic one and which is defined below:

Consider the additive group \(\mathbb{Z}_n \) and a subset \(C \) not containing 0. The circulant graph \(G \) is a graph whose vertices are elements of \(\mathbb{Z}_n \) and two vertices \(i, j \in \mathbb{Z}_n \) are adjacent in \(G \) if and only if \(i - j \in C \). The graph \(G \) of the Figure 5 is a circulant graph on \(\mathbb{Z}_{12} \) and the set \(C = \{ \pm 1, \pm 2, \pm 3 \} \). The set \(C \) is called a connection set of the circulant graph. By the definition of circulant graph, the cycle \(C_n \) and complete graph \(K_n \) are circulant graphs with connection sets \(C_1 = \{ \pm 1 \} \) and \(C_2 = \{ \pm 1, \pm 2, \ldots, \pm \frac{n-1}{2} \} \) where \(n \) is odd respectively.

In this section, we find the signed domatic number of a circulant graph \(G_n \) on \(\mathbb{Z}_n \) with the connection set \(C = \{ \pm 1, \pm 2 \} \), so that the circulant graph considered here is a regular graph of degree four.

We find the signed domatic number of circulant graph \(G_n \) on \(\mathbb{Z}_n \) with connection set \(C = \{ \pm 1, \pm 2 \} \) for various values of \(n \) in terms of following Lemmas:

Lemma 5.4.1: Let \(G_n \) be a circulant graph on \(\mathbb{Z}_n \) with connection set \(C = \{ \pm 1, \pm 2 \} \) and \(n = 5l \), for some integer \(l \), then \(d_s(G_n) = 5 \).

Proof: Let \(V(G_n) = \{0, 1, 2, \ldots, 5l - 1\} \) and define a functions \(f_j : V \rightarrow \{-1, 1\} \) for \(j = 1, 2, 3, 4, 5 \) as below:

- \(f_1(5i) = f_1(5i + 1) = -1 \), for \(i = 0, 1, 2, \ldots, l - 1 \) and \(f_1(x) = 1 \), for \(x \neq 5i \) and \(5i + 1 \);
- \(f_2(5i + 1) = f_2(5i + 2) = -1 \), for \(i = 0, 1, 2, \ldots, l - 1 \) and \(f_2(x) = 1 \), for \(x \neq 5i + 1 \) and \(5i + 2 \);
- \(f_3(5i + 2) = f_3(5i + 3) = -1 \), for \(i = 0, 1, 2, \ldots, l - 1 \) and \(f_3(x) = 1 \), for \(x \neq 5i + 2 \).
and $5i + 3$;

$f_4(5i + 3) = f_4(5i + 4) = -1$, for $i = 0, 1, 2, ..., l - 1$ and $f_4(x) = 1$, for $x \neq 5i + 3$
and $5i + 4$ finally,

$f_5(5i + 4) = f_5(5i + 5) = -1$, for $i = 0, 1, 2, ..., l - 1$ and $f_5(x) = 1$, for $x \neq 5i + 4$
and $5i + 5$.

One can easily verify that each f_j, for $j = 1, 2, 3, 4, 5$ is a signed dominating
function in G_n and also $\sum_{j=1}^{5} f_j(k) \leq 1$; for all $k \in \mathbb{Z}$. Thus, $d_s(G_n) \geq 5$. On the other
hand, G_n is a regular graph of degree 4 and hence by the Proposition 5.2.9, we have

$d_s(G_n) \geq 4 + 1 = 5$, Thus, the Lemma is proved.

The following example explains the proof of the Lemma 5.4.1, Consider G_{18}
with $C = \{\pm 1, \pm 2\}$ as in the Figure-5.6

![Figure-5.6](image-url)
The following table gives the functional values of \(f_j \), for \(j = 1, 2, 3, 4, 5 \).

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f_1)</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>(f_2)</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>(f_3)</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>(f_4)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>(f_5)</td>
<td>-1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

\[\sum_{j=1}^{5} f_j(k) \]

Table 1

Lemma 5.4.2: Let \(G_n \) be a circulant graph on \(Z_n \) with connection set \(C = \{\pm 1, \pm 2\} \) and \(n = 3l \), and \(n \equiv 0 \pmod{5} \), then \(d_s(G_n) = 3 \).

Proof: Define a functions \(f_1, f_2 \) and \(f_3 \) on the vertex set \(V(G_n) \) into \(\{-1, 1\} \) as below:

\(f_1(3i) = -1 \), for \(i = 0, 1, 2, \ldots, l - 1 \) and \(f_1(x) = 1 \), for \(x \neq 3i; \)

\(f_2(3i + 1) = -1 \), for \(i = 0, 1, 2, \ldots, l - 1 \) and \(f_2(x) = 1 \), for \(x \neq 3i + 1; \)

\(f_3(3i + 2) = -1 \), for \(i = 0, 1, 2, \ldots, l - 1 \) and \(f_3(x) = 1 \), for \(x \neq 3i + 2. \)

Clearly, \(f_j \) is a signed dominating function for \(j = 1, 2, 3 \) and also \(\sum_{j=1}^{3} f_j(k) \leq 1 \), for all \(k \in Z_n \). Thus, \(d_s(G_n) \geq 3 \) holds.

On the other hand, by the Theorem 2.3.1, \(\gamma_s(G) \geq \frac{n}{4 + 1} = \frac{9}{5} \), but 5 is not divisible by \(n \), therefore \(\gamma_s(G) > \frac{n}{5} \). By using the Proposition 5.2.2; we have
\[\frac{n}{5}.d_s(G) < \gamma_s(G).d_s(G) \leq n. \]

Therefore, \(d_s(G) < 5 \) which implies \(d_s(G) \leq 3 \), since \(d_s(G) \) is always odd integer and hence the Lemma.

LEMMA 5.4.3: Let \(G_n \) be a circulant graph on \(Z_n \) with the connection set \(C = \{\pm 1, \pm 2\} \) and \(n \equiv 1, 2 (mod 3) \) and 5 is not divisible by \(n \) and \(n \neq 7 \), then \(d_s(G) = 3 \).

PROOF: The proof of this lemma, runs on the similar as in case of Lemma 5.4.2.

LEMMA 5.4.4: Let \(G_7 \) be a circulant graph on \(Z_7 \) with the connection set \(C = \{\pm 1, \pm 2\} \), then \(d_s(Z_7) = 1 \).

PROOF: Clearly, no signed dominating function \(f \) admits more than two negative, and therefore \(\gamma_s(G) \geq 3 \). But a function \(f : V \rightarrow \{-1, 1\} \) defined by \(f(0) = f(1) = -1, f(x) = 1 \) for \(x \neq 0, 1 \) gives us that \(\gamma_s(G) \geq 3 \). Therefore, \(\gamma_s(G) = 3 \) holds. Again by the Proposition 5.2.2, we have \(d_s(G_7) \leq \frac{7}{3} \).

This implies that \(d_s(G_7) \leq 1 \) and hence \(d_s(G_7) = 1 \).
REFERENCES

[12] Z.Zhang, B.Xu, Y.Li and Liu: *A note on the lower bounds of signed dom-
