Contents

Title page i
Abstract ii
Declaration xvi
Certificate xvii
Acknowledgements xix
Contents xix
List of tables xxix
List of figures xxxii
List of abbreviations xxxv
List of symbols xxxvi

Chapter 1: INTRODUCTION [1-12]
1.1. Polyphenols in fruits and vegetables 3
1.2. Effect of processing on polyphenols and antioxidant properties 4
1.3. Utilisation of fruit by-products 5
1.4. Fruits and vegetables of Assam, India 6
1.5. Objectives 8
Bibliography 8

Chapter 2: REVIEW OF LITERATURE [13-45]
2.1. Polyphenols as important phytochemicals in plants 13
2.1.2. Phenolic acids 14
2.1.2. Flavonoids 14
2.1.3. Biosynthesis of polyphenol 15
2.1.4. Functional role of polyphenols (phenolic acids and flavonoids) 18
2.2. Polyphenols in fruits and vegetables 20
2.3. Polyphenol bioavailability and metabolism 22
2.4. Effect of processing of fruits and vegetables on the polyphenol content 23
2.5. Processing effects on the polyphenol content of fruits and vegetables 24
2.6. Fruit by-products, their phytochemical content and utilization

Chapter 3: TO DETERMINE THE PHYTOCHEMICAL CONTENT AND ANTIOXIDANT CAPACITIES IN SELECTED FRESH FRUITS AND COOKED VEGETABLES OF ASSAM.

3.1. Introduction

3.2. Material and methods

3.2.1. Materials

3.2.2. Fruit samples

3.2.3. Vegetable samples

3.2.4. Cooking treatments

3.2.5. Sample extraction

3.2.6. Phytochemical content and antioxidant activities

3.2.6.1. Determination of total phenolic content

3.2.6.2. Determination of total flavonoid content

3.2.6.3. Determination of ferric reducing antioxidant property (FRAP)

3.2.6.4. Determination of DPPH radical scavenging activity

3.2.6.5. Determination of metal chelating capacity

3.2.7. RP-HPLC study of the polyphenols

3.2.8. Statistical analysis

3.3. Results and discussion

3.3.1. Phytochemical and antioxidant properties of thirteen fruit samples

3.3.2. RP-HPLC analysis of the phenolic acids in the thirteen fruit samples

3.3.3. Changes in the phytochemical content after processing in the vegetable samples

3.3.3.1. Changes in total phenolic content (TPC) and total flavonoid content (TFC)

3.3.4. Changes in the antioxidant activities after processing in the vegetable samples

3.3.4.1. Changes in ferric reducing antioxidant potential (FRAP)

3.3.4.2. Changes in DPPH radical scavenging activity

3.3.4.3. Changes in metal chelation capacity (MCC)
3.3.5. Changes in the phenolic acids composition in the processed four selected vegetables

3.4. Conclusion

Bibliography

Chapter 4: EFFECT OF SPRAY DRYING OF FOUR FRUIT JUICES ON PHYSICOCHEMICAL, PHYTOCHEMICAL AND ANTIOXIDANT PROPERTIES [85-104]

4.1. Introduction 85
4.2. Materials and methods 86
4.2.1. Materials 86
4.2.2. Fruit juice preparation 86
4.2.3. pH, total solid content and viscosity of the feed samples 87
4.2.4. Spray drying of the juice-maltodextrin mixture 87
4.2.5. Yield of powder 87
4.2.6. Physicochemical properties of the spray dried powder 88
4.2.6.1. Moisture content 88
4.2.6.2. Bulk density, tapped density, Hausner's ratio and Carr index 88
4.2.6.3. Colour properties of the fresh feed and reconstituted samples 89
4.2.6.4. pH and titratable acidity of the powdered samples 89
4.2.6.5. Solubility 90
4.2.6.6. Hygroscopicity 90
4.2.7. Surface morphology study of the spray dried powder by scanning electron microscopy (SEM) 90
4.2.8. Particle size distribution of the powdered samples 90
4.2.9. Phytochemical content and antioxidant activities of the fresh juice and dried powder 91
4.2.9.1. Sample extraction 91
4.2.9.2. Determination of total phenolic content 91
4.2.9.3. Determination of total flavonoid content 91
4.2.9.4. Determination of ferric reducing antioxidant property (FRAP) 92
4.2.9.5. Determination of DPPH activity 92
4.2.10. Statistical analysis 92
4.3. Results and discussion 93
4.3.1. Total solid content, pH and viscosity of the feed sample 93

xxi
4.3.2. Particle size distribution, cohesiveness and flow ability of the powdered sample
4.3.3. Physicochemical parameters of the spray dried fruit juice powders
4.3.4. Surface morphology study of the spray dried juice powder
4.3.5. Colour of the spray dried fruit juice powders
4.3.6. Phytochemical content and activity of spray dried fruit juice
4.4. Conclusion

Chapter 5: EFFECT OF DIFFERENT PASTEURISATION METHODS ON PHYTOCHEMICAL AND ANTIOXIDANT PROPERTY OF FIVE FRUIT JUICES

5.1 Introduction
5.2 Materials and methods
5.2.1. Materials
5.2.2. Fruit juice preparation
5.2.3. Total plate count of the treated samples
5.2.4. Colour
5.2.5. Changes in the phytochemical and antioxidant activity of the processed juice samples
5.2.5.1. Determination of total phenolic content
5.2.5.2. Determination of total flavonoid content
5.2.5.3. Determination of ferric reducing antioxidant property (FRAP)
5.2.5.4. Determination of DPPH radical scavenging activity
5.2.6. HPLC study of the polyphenols
5.2.7. Statistical analysis
5.3 Results and discussion
5.3.1. Microbial load in the processed juice samples
5.3.2. Colour values of the juice samples and overall change in colour (ΔE) after processing
5.3.3. Phytochemical and antioxidant changes
5.3.4. HPLC determination of the phenolic acids and ascorbic acid content in the processed juice samples
5.4. Conclusions

Bibliography
Chapter 6: OPTIMISATION OF PHENOLIC EXTRACTION FROM CARAMBOLA POMACE BY RESPONSE SURFACE METHODOLOGY AND ITS MICROENCAPSULATION BY SPRAY AND FREEZE DRYING METHODS

6.1. Introduction 132
6.2. Materials and methods 134
 6.2.1. Chemicals and reagents 134
 6.2.2. Materials 134
 6.2.3. Extraction of polyphenols from the pomace 134
 6.2.4. Experimental design for optimisation using Central composite rotatable design (CCRD) by response surface methodology (RSM) 134
 6.2.4.1. Total phenolic content (TPC) 135
 6.2.4.2. Ferric reducing antioxidant property (FRAP) 135
 6.2.4.3. DPPH radical scavenging activity 135
 6.2.5. RP-HPLC study of the polyphenol extract 136
 6.2.6. Encapsulation process 137
 6.2.6.1. Moisture content 137
 6.2.6.2. Bulk density 138
 6.2.6.3. Solubility 138
 6.2.6.4. Colour 138
 6.2.6.5. Hygroscopicity 138
 6.2.7. Total phenolic content analysis (TPC), surface phenolic content (SPC) and encapsulating efficiency 139
 6.2.8. In vitro simulated gastric and intestinal digestion release study of the encapsulates 139
 6.2.9. Surface morphology study by scanning electron microscope (SEM) 140
 6.2.10. Statistical analysis 140
6.3. Results and discussion 140
 6.3.1. Optimisation and fitting of the model 140
 6.3.1.1. Effect of temperature and ethanol concentration on TPC 140
 6.3.1.2. Effect of temperature and ethanol concentration on FRAP 141
 6.3.1.3. Effect of temperature and ethanol concentration on DPPH radical scavenging activity 143

xxiii
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.2.6. Phytochemical content and antioxidant activity</td>
<td>162</td>
</tr>
<tr>
<td>7.2.6.1. Sample extraction</td>
<td>162</td>
</tr>
<tr>
<td>7.2.6.2. Determination of total phenolic content</td>
<td>162</td>
</tr>
<tr>
<td>7.2.6.3. Determination of total flavonoid content</td>
<td>162</td>
</tr>
<tr>
<td>7.2.6.4. Determination of ferric reducing antioxidant property (FRAP)</td>
<td>163</td>
</tr>
<tr>
<td>7.2.6.5. Determination of DPPH Activity</td>
<td>163</td>
</tr>
<tr>
<td>7.2.6.6. Determination of Metal Chelation Capacity</td>
<td>163</td>
</tr>
<tr>
<td>7.2.6.7. RP-HPLC study of the polyphenols</td>
<td>164</td>
</tr>
<tr>
<td>7.2.7. Functional properties</td>
<td>164</td>
</tr>
<tr>
<td>7.2.7.1. Glucose adsorption capacity and amylase activity inhibition</td>
<td>164</td>
</tr>
<tr>
<td>7.2.7.2. Glucose diffusion rate and glucose diffusion reduction index (GDRI)</td>
<td>165</td>
</tr>
<tr>
<td>7.2.8. Statistical Analysis</td>
<td>165</td>
</tr>
<tr>
<td>7.3. Results and discussion</td>
<td>165</td>
</tr>
<tr>
<td>7.3.1. Proximate composition</td>
<td>165</td>
</tr>
<tr>
<td>7.3.2. Yield and total dietary fibre</td>
<td>166</td>
</tr>
<tr>
<td>7.3.3. Colour</td>
<td>167</td>
</tr>
<tr>
<td>7.3.4. Physicochemical properties</td>
<td>167</td>
</tr>
<tr>
<td>7.3.5. Phytochemical content and antioxidant activity</td>
<td>168</td>
</tr>
<tr>
<td>7.3.5.1. Phenolic acids compositions of the selected fibres determined by RP-HPLC</td>
<td>169</td>
</tr>
<tr>
<td>7.3.6. Functional properties</td>
<td>172</td>
</tr>
<tr>
<td>7.3.6.1. Glucose adsorption and amylase activity inhibition rate</td>
<td>172</td>
</tr>
<tr>
<td>7.3.6.2. Glucose diffusion rate (GDR) and glucose diffusion reduction index (GDRI)</td>
<td>173</td>
</tr>
<tr>
<td>7.4. Conclusion</td>
<td>174</td>
</tr>
<tr>
<td>Bibliography</td>
<td>174</td>
</tr>
</tbody>
</table>

Chapter 8: DEVELOPMENT OF A CARAMBOLA POMACE FIBRE FORTIFIED MIX FRUIT BEVERAGE POWDER AND ITS CHARACTERIZATION [177-199]

8.1. Introduction | 177 |
8.2. Materials and methods | 178 |

xxv
8.2.1. Materials
8.2.2. Fruit juice mix preparation for spray drying
8.2.3. Viscosity and pH of the mix fruit juice fibre-maltodextrin feed sample at 10°B
8.2.4. Spray drying of the mix fruit juice fibre-maltodextrin
8.2.5. Experimental design for optimization using central composite rotatable design (CCRD) by response surface methodology (RSM)
8.2.6. Determination of the response variables
8.2.6.1. Moisture content
8.2.6.2. Yield of powder
8.2.6.3. Solubility
8.2.6.4. Bulk density
8.2.6.5. Hygroscopicity
8.2.7. Characterization of the obtained spray dried fibre fortified mix fruit beverage powder
8.2.7.1. Determination of proximate content.
8.2.7.1.1. Moisture content
8.2.7.1.2. Crude protein content
8.2.7.1.3. Crude lipid content
8.2.7.1.4. Ash content
8.2.7.1.5. Total reducing sugar
8.2.7.1.6. Total dietary fibre
8.2.7.2. Color comparison of the reconstituted beverage with the feed solution before drying
8.2.7.3. Particle size distribution
8.2.7.4. Bulk density (BD), tapped density (TD), Hausner’s ratio (HR) and Carr Index (CI)
8.2.7.5. Dissolution test and pH of the beverage powder
8.2.7.6. Water activity
8.2.7.7. Surface morphology of the spray dried powder by scanning electron microscopy (SEM)
8.2.7.8. Sensory analysis using 9-point Hedonic scale
8.2.7.9. Statistical analysis
8.3. Results and discussion

xxvi
8.3.1. Optimization and fitting of the model
8.3.2. Effect of independent variables on responses in the spray dried beverage powder
8.3.2.1. Moisture content
8.3.2.2. Yield
8.3.2.3. Solubility
8.3.2.4. Bulk density
8.3.2.5. Hygroscopicity
8.3.3. Verification of the predictive model
8.3.4. pH, total solid content and viscosity of the feed sample
8.3.5. Proximate composition of the beverage powder and dissolution test, pH and water activity (a_w) of the powder
8.3.6. Bulk density, tapped density and flow property of the powder
8.3.7. Change in color L a b values when the reconstituted beverage was compared to the fresh feed sample
8.3.8. Particle size distribution and Span
8.3.9. Surface morphology of the beverage powder
8.3.10. Sensory analysis results of the reconstituted beverage powder
8.4. Conclusion
8.5. Bibliography