CHAPTER 1: Introduction

1.1 Introduction
 1.1.A. Pest Infestation
 1.1.B. Various applications of remote sensing

1.2 Definition of Remote Sensing:

1.3 Historical Background

1.4 Types Of Remote Sensing
 1.4.A. Sensors used for active remote sensing:

1.5 History of Active Microwave Remote Sensing:

1.6 Remote Sensing in the Field of Agriculture

1.7 Microwave and Its Importance

1.8 Interactions of Microwave with Plant Parameters
 1.8.A. Interaction of microwaves with chlorophyll
 1.8.B. Microwave interactions with biomass

1.9 Experiment Procedure
 1.9.A. Theory of measurement:

1.10 Field Data Measurements
 1.10.A. Method of measurement of leaf area index (LAI)
 1.10.B. Total chlorophyll content (TC) measurement
 1.10.C. Soil moisture measurements method
 1.10.D. Plant height measurements
 1.10.E. Biomass measurements

1.11 Statistical/Regression Analysis
 1.11.A. Correlation
 1.11.B. Types of correlation
1.11.C. Correlation coefficient - 26
1.11.D. Simple regression - 26
1.11.E. Standard error (SE) - 28
1.11.F. Coefficient of determination (r^2) - 28

CHAPTER 2: An Approach To Assess (Heiroglyphus nigrorepletus, Bolivar) A Pest On Sorghum By Remote Sensing Method

2.1. Introduction - 34

2.2. The Crop: Sorghum - 36

2.2.A. Sorghum morphology - 37

2.2.B. Pest occurrence to sorghum - 37

2.2.B (i) Lifecycle - 38

2.2.B (ii) Damage - 38

2.3. Analysis of field data - 38

2.3.A. Development of empirical relation for plant parameters and pest occurrence - 40

2.4. Scatterometer data analysis - 41

2.4.A. Temporal variation of scattering coefficient and emissivity - 41

2.4.B. Variation of scattering coefficient with total chlorophyll (TC) of sorghum - 43

2.4.C. Variation of emissivity with total chlorophyll (TC) of sorghum - 44

2.5. Assessment of pest with remote sensing technique (i.e., with X-band scatterometer) - 46

2.5.A. Interpretation of Pest infestation by microwave scattering - 46

2.5.B. Interpretation of Pest infestation by microwave emissivity - 46

2.6. Concluding Remarks - 47
Chapter 3: Investigation Of A Model Inversion Technique To Estimate Pest Infestation In Paddy With Microwave Remote Sensing

3.1. Introduction - 61
 3.1.A. Microwave interaction with crop paddy parameters - 62
3.2. Various Stages of Paddy - 63
3.3. Observed Pest on Paddy - 64
3.4. Description Of Field Data And Its Analysis - 65
3.5. Pest Occurrence Analysis - 66
3.6. Scatterometer Data Analysis - 67
 3.6.a. Variation of scattering coefficient with plant age - 67
 3.6.b. Temporal variation of microwave emission - 68
3.7. Analysis Of Scattering Coefficient With Total Chlorophyll (TC) Of Paddy - 69
3.8. Analysis Of Emissivity For Total Chlorophyll Of Paddy - 70
3.9. Occurrence Of Pest With Remote Sensing Technique (i.e., by x-band scatterometer) - 71
 3.9.A. Assessment of pest infestation by microwave scattering: - 71
 3.9.B. Assessment of pest infestation by microwave emissivity - 72
3.10. Concluding Remarks - 72

Chapter 4: Monitoring Of Sunflower Using Microwave Remote Sensing For Pest Infestation

4.1. Introduction - 86
4.2. Critical growth stages of crop - 87
Chapter 5: The Potential of Microwave Remote Sensing In Assessing Pest Infestation of Wheat

5.1 Introduction - 107
5.2 Wheat Growth Stages - 109
5.3 Pest Infestation in Crop Wheat - 109
5.4 Analysis of Field Data - 111
 5.4.A. Analysis of pest Infestation on wheat with crop parameter - 112
5.5 Study of Scatterometer Data - 113
 5.5.A. Temporal variation of scattering
5.5.B. Variation of scattering coefficient with biomass (BIO) of wheat

5.5.C. Variation of emissivity with biomass of wheat

5.6 Pest estimation with Remote Sensing Technique (i.e., with X-band Scatterometer)

5.6.A Estimation of pest infestation by microwave scattering:

5.6.B Interpretation of pest infestation by microwave emissivity

5.7 Concluding Remark:

Tables and Graphs

References

List of Publications