Chapter 3

ALMOST CONTRA $G\delta S$-CONTINUOUS FUNCTIONS IN TOPOLOGICAL SPACES

In 1996, Dontchev [29] introduced the notion of contra continuity and strong S-closedness in topological spaces. In this chapter, the concepts of almost contra $g\delta s$-continuous functions are introduced and investigated some of their properties and characterizations.

3.1 Introduction

A function is said to be almost contra $g\delta s$-continuous if inverse image every regular open set is $g\delta s$-closed set. It is proved that a function f is almost contra $g\delta s$-continuous if and only if for each $x \in X$ and each regular closed set F of Y containing $f(x)$, there exists $g\delta s$-open U containing x such that $f(U) \subseteq F$.

The graph $G(f)$ of a function $f : X \rightarrow Y$ is said to be contra $g\delta s$-closed if for each $(x,y) \in (X,Y) - G(f)$, there exist $U \in G\delta SO(X,x)$ and $V \in C(Y,y)$ such that $(U \times V) \cap G(f) = \emptyset$. It is proved that, if $f : X \rightarrow Y$ is contra $g\delta s$-continuous and Y is Urysohn, then $G(f)$ contra $g\delta s$-closed in $X \times Y$ and if $f : X \rightarrow Y$ is almost weakly $g\delta s$-
continuous and \(Y \) is Urysohn, then \(G(f) \) strongly contra \(g \delta s \)-closed in \(X \times Y \).

3.2 Preliminaries

Throughout this chapter, \((X, \tau) \), \((Y, \sigma) \) and \((Z, \eta) \) (or simply \(X \), \(Y \) and \(Z \)) always mean topological spaces on which no separation axioms are assumed unless explicitly stated. For a subset \(A \) of a space \(X \) the closure and interior of \(A \) with respect to \(\tau \) are denoted by \(Cl(A) \) and \(Int(A) \) respectively. A subset \(A \) of \(X \) is called regular open (resp. regular closed) if \(A = Int(Cl(A)) \) (resp. \(A = Cl(Int(A)) \)). The \(\delta \)-interior [74] of a subset \(A \) of \(X \) is the union of all regular open sets of \(X \) contained in \(A \) and is denoted by \(\delta - Int(A) \) and the set \(A \) of \(X \) is called \(\delta \)-open [74] if \(A = \delta - Int(A) \). The complement of a \(\delta \)-open set is called \(\delta \)-closed.

Definition 3.2.1. A subset \(A \) of a space \(X \) is called
(i) a semiopen set [42] if \(A \subset Cl(Int(A)) \).
(ii) an \(\alpha \)-open set [52] if \(A \subset Int(Cl(Int(A))) \).
(iii) a regular open set [70] if \(A = Int(Cl(A)) \).

The complements of the above mentioned sets are called their respective closed sets. The semi-closure [20] of a subset \(A \) of a space \(X \) is the intersection of all semiclosed sets that contain \(A \) and is denoted
by $s\text{Cl}(A)$. The semi interior $[20]$ of a subset A of space X is the union of all semiopen sets contained in A and is denoted by $s\text{Int}(A)$.

Definition 3.2.2. [9] A subset A of X is $g\delta s$-closed if $s\text{Cl}(A) \subseteq U$ whenever $A \subseteq U$ and U is δ-open in X. The family of all $g\delta s$-closed subsets of the space X is denoted by $G\delta SC(X)$.

Definition 3.2.3. [9] The intersection of all $g\delta s$-closed sets containing a set A is called $g\delta s$-closure of A and is denoted by $g\delta s\text{-Cl}(A)$.

A set A is $g\delta s$-closed set if and only if $g\delta s\text{-Cl}(A) = A$.

Definition 3.2.4. [9] The union of all $g\delta s$-open sets contained in A is called $g\delta s$-interior of A and is denoted by $g\delta s\text{-Int}(A)$.

A set A is $g\delta s$-open if and only if $g\delta s\text{-Int}(A) = A$.

Definition 3.2.5. [9] A topological space X is called
(i) $sT_{3/4}$[9] if every $g\delta s$-closed subset of X is δ-closed.
(ii) $g\delta sT_{1/2}$[9] if every $g\delta s$-closed subset of X is semiclosed.
(iii) $Tg\delta s$[10] if every $g\delta s$-closed subset of X is closed.

Definition 3.2.6. [10] A function $f : X \to Y$ is called $g\delta s$-continuous, if the inverse image of every closed set in Y is $g\delta s$-closed in X.
3.3 Almost contra $g\delta s$-continuous functions

In this section, new type of continuity called an almost contra $g\delta s$-continuity, which is weaker than contra $g\delta s$-continuity is introduced and studied some of their properties and characterizations.

Definition 3.3.1. A function $f : X \to Y$ is said to be almost contra $g\delta s$-continuous if $f^{-1}(V)$ is $g\delta s$-closed in X for each regular open set V in Y.

Definition 3.3.2. [57] A function $f : X \to Y$ is said to be almost continuous if $f^{-1}(V)$ is open in X for each regular open set V of Y.

Definition 3.3.3. [58] A function $f : X \to Y$ is said to be (θ, s)-continuous if $f^{-1}(V)$ is closed in X for each regular open set V of Y.

Theorem 3.3.4. If X is $Tg\delta s$-space and $f : X \to Y$ is almost contra $g\delta s$ continuous, then it is (θ, s)-continuous.

Proof. Let U be a regular open set in Y. Since f is almost contra $g\delta s$-continuous $f^{-1}(U)$ is $g\delta s$-closed set in X and X is $Tg\delta s$-space, which implies $f^{-1}(U)$ is closed set in X. Therefore f is contra almost continuous.

Definition 3.3.5. [15] A space X is called locally $g\delta s$-indiscrete if every $g\delta s$-open set is closed in X.

42
Theorem 3.3.6. If a function $f : X \rightarrow Y$ is almost contra $g\delta s$-continuous and X is locally $g\delta s$-indiscrète space, then f is almost continuous.

Proof. Let U be a regular open set in Y. Since f is almost contra $g\delta s$-continuous $f^{-1}(U)$ is $g\delta s$-closed set in X and X is locally $g\delta s$-indiscrète space, which implies $f^{-1}(U)$ is an open set in X. Therefore f is almost continuous.

Definition 3.3.7. [13] A function $f : X \rightarrow Y$ is said to be contra $g\delta s$-continuous if $f^{-1}(V)$ is $g\delta s$-closed in X for each open set V in Y.

Theorem 3.3.8. If $f : X \rightarrow Y$ is contra $g\delta s$-continuous then it is almost contra $g\delta s$-continuous.

Proof. Obvious, because every regular open set is open set.

Remark 3.3.9. Converse of the above theorem need be true in general as seen from the following example.

Example 3.3.10. Let $X = Y = \{a, b, c\}$, $\tau = \{X, \phi, \{a\}, \{b\}, \{a, b\}\}$, and $\sigma = \{Y, \phi, \{a\}, \{a, b\}\}$ be topologies on X and Y respectively. Define a function $f : X \rightarrow Y$ by $f(a) = a$, $f(b) = b$ and $f(c) = c$. Then f is almost contra $g\delta s$-continuous function but not contra $g\delta s$-continuous, because for the open set $\{a, b\}$ in Y and $f^{-1}(\{a, b\}) = \{a, b\} = \{a, b\}$ is not $g\delta s$-closed in X:
Theorem 3.3.11. The following are equivalent for a function $f : X \to Y$

(i) f is almost contra $g\delta s$-continuous.

(ii) for every regular closed set F of Y, $f^{-1}(F)$ is $g\delta s$-open set of X.

(iii) for each $x \in X$ and each regular closed set F of Y containing $f(x)$, there exists $g\delta s$-open U containing x such that $f(U) \subseteq F$.

(iv) for each $x \in X$ and each regular open set V of Y not containing $f(x)$, there exists $g\delta s$-closed set K not containing x such that $f^{-1}(V) \subseteq K$.

Proof. (i)⇒ (ii) Let F be a regular closed set in Y, then $Y - F$ is a regular open set in Y. By (i), $f^{-1}(Y - F) = X - f^{-1}(F)$ is $g\delta s$-closed set in X. This implies $f^{-1}(F)$ is $g\delta s$-open set in X. Therefore (ii) holds.

(ii)⇒(i) Let G be a regular open set of Y. Then $Y - G$ is a regular closed set in Y. By (ii), $f^{-1}(Y - G)$ is $g\delta s$-open set in X. This implies $X - f^{-1}(G)$ is $g\delta s$-open set in X, which implies $f^{-1}(G)$ is $g\delta s$-closed set in X. Therefore (i) hold.

(ii)⇒(iii) Let F be a regular closed set in Y containing $f(x)$, which implies $x \in f^{-1}(F)$. By (ii), $f^{-1}(F)$ is $g\delta s$-open in X containing x. Set $U = f^{-1}(F)$, which implies U is $g\delta s$-open in X containing x and $f(U) = f(f^{-1}(F)) \subseteq F$. Therefore (iii) holds.

(iii)⇒(ii) Let F be a regular closed set in Y containing $f(x)$, which
implies $x \in f^{-1}(F)$. From (iii), there exists $g\delta s$-open U_x in X containing x such that $f(U_x) \subset F$. That is $U_x \subset f^{-1}(F)$. Thus $f^{-1}(F) = \bigcup \{U_x : x \in f^{-1}(F)\}$, which is union of $g\delta s$-open sets. Therefore $f^{-1}(F)$ is $g\delta s$-open set of X.

(iii) \Rightarrow (iv) Let V be a regular open set in Y not containing $f(x)$. Then $Y - V$ is a regular closed set in Y containing $f(x)$. From (iii), there exists a $g\delta s$-open set U in X containing x such that $f(U) \subset Y - V$. This implies $U \subset f^{-1}(Y - V) = X - f^{-1}(V)$. Hence, $f^{-1}(V) \subset X - U$.

Set $K = X - U$, then K is $g\delta s$-closed set not containing x in X such that $f^{-1}(V) \subset K$.

(iv) \Rightarrow (iii) Let F be a regular closed set in Y containing $f(x)$. Then $Y - F$ is a regular open set in Y not containing $f(x)$. From (iv), there exists $g\delta s$-closed set K in X not containing x such that $f^{-1}(Y - F) \subset K$. This implies $X - f^{-1}(F) \subset K$. Hence, $X - K \subset f^{-1}(F)$, that is $f(X - K) \subset F$. Set $U = X - K$, then U is $g\delta s$-open set containing x in X such that $f(U) \subset F$.

Theorem 3.3.12. The following are equivalent for a function $f : X \rightarrow Y$:

(i) f is almost contra $g\delta s$-continuous.

(ii) $f^{-1}(\text{Int}(\text{Cl}(G)))$ is $g\delta s$-closed set in X for every open subset G of Y.

45
(iii) \(f^{-1}(\text{Cl}(\text{Int}(F))) \) is \(\text{g}\delta s \)-open set in \(X \) for every closed subset \(F \) of \(Y \).

Proof. (i)\(\Rightarrow \) (ii) Let \(G \) be an open set in \(Y \). Then \(\text{Int}(\text{Cl}(G)) \) is regular open set in \(Y \). By (i), \(f^{-1}(\text{Int}(\text{Cl}(G))) \in G\delta SC(X) \).

(ii)\(\Rightarrow \) (i) Proof is obvious.

(i)\(\Rightarrow \) (iii) Let \(F \) be a closed set in \(Y \). Then \(\text{Cl}(\text{Int}(G)) \) is regular closed set in \(Y \). By (i), \(f^{-1}(\text{Cl}(\text{Int}(G))) \in G\delta SO(X) \).

(iii)\(\Rightarrow \) (i) Proof is obvious.

Definition 3.3.13. [17] A space \(X \) is said to be weakly Hausdorff if each element of \(X \) is an intersection of regular closed sets.

Definition 3.3.14. [11] A function \(f : X \rightarrow Y \) is said to be strongly \(g\delta s \)-open (resp. strongly \(g\delta s \)-closed) if image of every \(g\delta s \)-open (resp. \(g\delta s \)-closed) set of \(X \) is \(g\delta s \)-open (resp. \(g\delta s \)-closed) set in \(Y \).

Definition 3.3.15. [11] A topological space \(X \) is said to be \(g\delta s \)-\(T_1 \) space if for any pair of distinct points \(x \) and \(y \), there exist a \(g\delta s \)-open sets \(G \) and \(H \) such that \(x \in G, y \notin G \) and \(x \notin H, y \in H \).

Theorem 3.3.16. If \(f : X \rightarrow Y \) is an almost contra \(g\delta s \)-continuous injection and \(Y \) is weakly Hausdorff, then \(X \) is \(g\delta s \)-\(T_1 \).

Proof. Suppose \(Y \) is weakly Hausdorff. For any distinct points \(x \) and \(y \) in \(X \), there exist \(V \) and \(W \) regular closed sets in \(Y \) such that
$f(x) \in V, f(y) \notin V, f(y) \in W$ and $f(x) \notin W$. Since f is almost contra $g\delta s$-continuous, $f^{-1}(V)$ and $f^{-1}(W)$ are $g\delta s$-open subsets of X such that $x \in f^{-1}(V)$, $y \notin f^{-1}(V)$, $y \in f^{-1}(W)$ and $x \notin f^{-1}(W)$. This shows that X is $g\delta s$-T_1.

Corollary 3.3.17. If $f : X \to Y$ is a contra $g\delta s$-continuous injection and Y is weakly Hausdorff, then X is $g\delta s$-T_1.

Definition 3.3.18. [67] A topological space X is called Ultra Hausdroff space, if for every pair of distinct points x and y in X, there exist disjoint clopen sets U and V in X containing x and y respectively.

Definition 3.3.19. [11] A topological space X is said to be $g\delta s$-T_2 space if for any pair of distinct points x and y, there exist disjoint $g\delta s$-open sets G and H such that $x \in G$ and $y \in H$.

Theorem 3.3.20. If $f : X \to Y$ is an almost contra $g\delta s$-continuous injective function from space X into a Ultra Hausdroff space Y, then X is $g\delta s$-T_2.

Proof. Let x and y be any two distinct points in X. Since f is an injective $f(x) \neq f(y)$ and Y is Ultra Hausdroff space, there exist disjoint clopen sets U and V of Y containing $f(x)$ and $f(y)$ respectively. Then $x \in f^{-1}(U)$ and $y \in f^{-1}(V)$, where $f^{-1}(U)$ and $f^{-1}(V)$ are disjoint $g\delta s$-open sets in X. Therefore X is $g\delta s$-T_2.

47
Definition 3.3.21. [67] A topological space X is called Ultra normal space, if each pair of disjoint closed sets can be separated by disjoint clopen sets.

Definition 3.3.22. [11] A topological space X is said to be $g\delta s$-normal if each pair of disjoint closed sets can be separated by disjoint $g\delta s$-open sets.

Theorem 3.3.23. If $f : X \rightarrow Y$ is an almost contra $g\delta s$-continuous closed injection and Y is ultra normal, then X is $g\delta s$-normal.

Proof. Let E and F be disjoint closed subsets of X. Since f is closed and injective $f(E)$ and $f(F)$ are disjoint closed sets in Y. Since Y is ultra normal there exists disjoint clopen sets U and V in Y such that $f(E) \subset U$ and $f(F) \subset V$. This implies $E \subset f^{-1}(U)$ and $F \subset f^{-1}(V)$. Since f is an almost contra $g\delta s$-continuous injection, $f^{-1}(U)$ and $f^{-1}(V)$ are disjoint $g\delta s$-open sets in X. This shows X is $g\delta s$-normal.

Definition 3.3.24. Let A be a subset of X. Then $g\delta s-\text{Cl}(A) - g\delta s-\text{Int}(A)$ is called $g\delta s$-frontier of A and is denoted by $g\delta s-\text{Fr}(A)$.

Theorem 3.3.25. The set of all points x of X at which $f : X \rightarrow Y$ is not almost contra $g\delta s$-continuous is identical with the union of $g\delta s$-frontier of the inverse images of closed sets of Y containing $f(x)$.

48
Proof. Assume that \(f \) is not almost contra \(g\delta s \)-continuous at \(x \in X \). Then, there exists \(F \in RC(Y, f(x)) \) such that \(f(U) \cap (Y - F) \neq \phi \) for every \(U \in G\delta SO(X, x) \). This implies \(U \cap f^{-1}(Y - F) \neq \phi \) for every \(U \in G\delta SO(X, x) \). Therefore \(x \in g\delta s-Cl(f^{-1}(Y - F)) = g\delta s-Cl(X - f^{-1}(F)) \) and also \(x \in f^{-1}(F) \subset g\delta s-Cl(f^{-1}(F)) \). Thus, \(x \in g\delta s-Cl(f^{-1}(F)) \cap g\delta s-Cl(X - f^{-1}(F)) \). This implies, \(x \in g\delta s-Cl(f^{-1}(F)) - g\delta s-Int(f^{-1}(F)) \). Therefore \(x \in g\delta s-Fr(f^{-1}(F)) \).

Conversely, suppose \(x \in g\delta s-Fr(f^{-1}(F)) \) for some \(F \in RC(Y, f(x)) \) and \(f \) is almost contra \(g\delta s \)-continuous at \(x \in X \), then there exists \(U \in G\delta SO(X, x) \) such that \(f(U) \subset F \). Therefore \(x \in U \subset f^{-1}(F) \) and hence \(x \in g\delta s-Int(f^{-1}(F)) \subset X - g\delta s-Fr(f^{-1}(F)) \). This contradicts that \(x \in g\delta s-Fr(f^{-1}(F)) \). Therefore \(f \) is not almost contra \(g\delta s \)-continuous.

Definition 3.3.26. [13] A space \(X \) is called \(g\delta s \)-connected provided that \(X \) is not the union of two disjoint nonempty \(g\delta s \)-open sets.

Theorem 3.3.27. If \(f : X \to Y \) is an almost contra \(g\delta s \)-continuous surjection and \(X \) is \(g\delta s \)-connected space, then \(Y \) is connected.

Proof. Let \(f : X \to Y \) be an almost contra \(g\delta s \)-continuous surjection and \(X \) is \(g\delta s \)-connected space. Suppose \(Y \) is a not connected space. Then there exist disjoint open sets \(U \) and \(V \) such that \(Y = U \cup V \). Therefore \(U \) and \(V \) are clopen in \(Y \). Since \(f \) is almost contra \(g\delta s-\)
continuous, \(f^{-1}(U) \) and \(f^{-1}(V) \) are \(g\delta s \)-open sets in \(X \). Moreover \(f^{-1}(U) \) and \(f^{-1}(V) \) are non empty disjoint and \(X = f^{-1}(U) \cup f^{-1}(V) \).

This is contradiction to the fact that \(X \) is \(g\delta s \)-connected space. Therefore \(Y \) is connected.

Definition 3.3.28. [18] A function \(f : X \to Y \) is said to be R-map if \(f^{-1}(V) \) is regular open in \(X \) for each regular open set \(V \) of \(Y \).

Definition 3.3.29. [55] A function \(f : X \to Y \) is said to perfectly continuous if \(f^{-1}(V) \) is clopen in \(X \) for each open set \(V \) of \(Y \).

Theorem 3.3.30. For two functions \(f : X \to Y \) and \(g : Y \to Z \), let \(g \circ f : X \to Z \) is a composition function. Then, the following properties hold.

(i) if \(f \) is almost contra \(g\delta s \)-continuous and \(g \) is an R-map, then \(g \circ f \) is almost contra \(g\delta s \)-continuous.

(ii) if \(f \) is almost contra \(g\delta s \)-continuous and \(g \) is perfectly continuous, then \(g \circ f \) is \(g\delta s \)-continuous and contra \(g\delta s \)-continuous.

(iii) if \(f \) is contra \(g\delta s \)-continuous and \(g \) is almost continuous, then \(g \circ f \) is almost contra \(g\delta s \)-continuous.

Proof. (i) Let \(V \) be any regular open set in \(Z \). Since \(g \) is an R-map, \(g^{-1}(V) \) is regular open in \(Y \). Since \(f \) is an almost contra \(g\delta s \)-continuous \(f^{-1}(g^{-1}(V)) = (g \circ f)^{-1}(V) \) is \(g\delta s \)-closed set in \(X \). Therefore \(g \circ f \) is almost contra
\(g\delta s\)-continuous.

(ii) Let \(V \) be any open set in \(Z \). Since \(g \) is perfectly continuous, \(g^{-1}(V) \) is clopen in \(Y \). Since \(f \) is an almost contra \(g\delta s\)-continuous \(f^{-1}(g^{-1}(V)) = (g \circ f)^{-1}(V) \) is \(g\delta s\)-open and \(g\delta s\)-closed set in \(X \). Therefore \(g \circ f \) is \(g\delta s\)-continuous and contra \(g\delta s\)-continuous.

(iii) Let \(V \) be any regular open set in \(Z \). Since \(g \) is almost continuous, \(g^{-1}(V) \) is open in \(Y \). Since \(f \) is contra \(g\delta s\)-continuous \(f^{-1}(g^{-1}(V)) = (g \circ f)^{-1}(V) \) is \(g\delta s\)-closed set in \(X \). Therefore \(g \circ f \) is almost contra \(g\delta s\)-continuous.

Theorem 3.3.31. Let \(f : X \to Y \) is a contra \(g\delta s\)-continuous and \(g : Y \to Z \) is \(g\delta s\)-continuous. If \(Y \) is \(Tg\delta s\)-space, then \(g \circ f : X \to Z \) is an almost contra \(g\delta s\)-continuous.

Proof. Let \(V \) be any regular open and hence open set in \(Z \). Since \(g \) is \(g\delta s\)-continuous \(g^{-1}(V) \) is \(g\delta s\)-open in \(Y \) and \(Y \) is \(Tg\delta s\)-space implies \(g^{-1}(V) \) open in \(Y \). Since \(f \) is contra \(g\delta s\)-continuous \(f^{-1}(g^{-1}(V)) = (g \circ f)^{-1}(V) \) is \(g\delta s\)-closed set in \(X \). Therefore \(g \circ f \) is an almost contra \(g\delta s\)-continuous.

Theorem 3.3.32. If \(f : X \to Y \) is surjective strongly \(g\delta s\)-open (or strongly \(g\delta s\)-closed) and \(g : Y \to Z \) is a function such that \(g \circ f : X \to Z \) is an almost contra \(g\delta s\)-continuous, then \(g \) is an almost contra \(g\delta s\)-continuous.

51
Proof. Let V be any regular closed (resp. regular open) set in Z. Since $g \circ f$ is an almost contra $g\delta s$-continuous, $(g \circ f)^{-1}(V) = f^{-1}(g^{-1}(V))$ is $g\delta s$-open (resp. $g\delta s$-closed) in X. Since f is surjective and strongly $g\delta s$-open (or strongly $g\delta s$-closed), $f(f^{-1}(g^{-1}(V))) = g^{-1}(V)$ is $g\delta s$-open (or $g\delta s$-closed). Therefore g is an almost contra $g\delta s$-continuous.

Definition 3.3.33. A topological space X is said to be $g\delta s$-ultra-connected if every two nonempty $g\delta s$-closed subsets of X intersect.

Definition 3.3.34. [68] A topological space X is said to be hyperconnected if every open set is dense.

Theorem 3.3.35. If X is $g\delta s$-ultra-connected and $f : X \to Y$ is an almost contra $g\delta s$-continuous surjection, then Y is hyperconnected.

Proof. Let X be a $g\delta s$-ultra-connected and $f : X \to Y$ is an almost contra $g\delta s$-continuous surjection. Suppose Y is not hyperconnected. Then there exists an open set V such that V is not dense in Y. Therefore there exist nonempty regular open subsets $B_1 = \text{Int}(\text{Cl}(V))$ and $B_2 = Y - \text{Cl}(V)$ in Y. Since f is an almost contra $g\delta s$-continuous surjection, $f^{-1}(B_1)$ and $f^{-1}(B_2)$ are disjoint $g\delta s$-closed sets in X. This is contrary to the fact that X is $g\delta s$-ultra-connected. Therefore Y is hyperconnected.
Definition 3.3.36. [13] A function $f : X \to Y$ is called weakly $g\delta s$-continuous if for each $x \in X$ and each open set V of Y containing $f(x)$, there exists $U \in G\delta SO(X, x)$ such that $f(U) \subseteq Cl(V)$.

Theorem 3.3.37. If a function $f : X \to Y$ is an almost contra $g\delta s$-continuous, then f is weakly $g\delta s$-continuous function.

Proof. Let $x \in X$ and V be an open set in Y containing $f(x)$. Then $Cl(V)$ is regular closed in Y containing $f(x)$. Since f is an almost contra $g\delta s$-continuous function by theorem 3.3.12. (ii), $f^{-1}(Cl(V))$ is $g\delta s$-open set in X containing x. Set $U = f^{-1}(Cl(V))$, then $f(U) \subseteq f(f^{-1}(Cl(V))) \subseteq Cl(V)$. This shows that f is almost weakly $g\delta s$-continuous function.

Definition 3.3.38. A space X is said to be
(i) $g\delta s$-compact if every $g\delta s$-open cover of X has a finite subcover.
(ii) $G\delta S$-closed compact [13] if every $g\delta s$-closed cover of X has a finite subcover.
(iii) nearly compact [63] if every regular open cover of X has a finite subcover.
(iv) countably $g\delta s$-compact if every countable cover of X by $g\delta s$-open sets has a finite subcover.
(v) countably $G\delta S$-closed compact [13] if every countable cover of X by $g\delta s$-closed sets has a finite subcover.
(vi) nearly countably compact [63] if every countable cover of X by regular open sets has a finite subcover.

(vii) $g\delta s$-Lindelof if every $g\delta s$-open cover of X has a countable subcover.

(viii) $G\delta S$-Lindelof [13] if every $g\delta s$-closed cover of X has a countable subcover.

(ix) nearly Lindelof [63] if every regular open cover of X has a countable subcover.

(x) S-Lindelof [34] if every cover of X by regular closed sets has a countable subcover.

(xi) countably S-closed [26] if every countable cover of X by regular closed sets has a finite subcover.

(xii) S-closed [1] if every regular closed cover of X has a finite subcover.

(xiii) mildly $g\delta s$-compact if every $g\delta s$-clopen cover of X has a finite subcover.

(xiv) mildly countably $g\delta s$-compact if every countable cover of X by $g\delta s$-clopen sets has a finite subcover.

(xv) mildly $g\delta s$-Lindelof if every $g\delta s$-clopen cover of X has a countable subcover.

Theorem 3.3.39. Let $f : X \to Y$ be an almost contra $g\delta s$-continuous surjection. Then, the following properties hold

(i) if X is $G\delta S$-closed compact, then Y is nearly compact.
(ii) if X is countably $G\delta S$-closed compact, then Y is nearly countably compact.

(iii) if X is $G\delta S$-Lindelof, then Y is nearly Lindelof.

Proof. (i) Let $\{V_\alpha : \alpha \in I\}$ be any regular open cover of Y. Since f is almost contra $g\delta s$-continuous, $\{f^{-1}(V_\alpha) : \alpha \in I\}$ is $g\delta s$-closed cover of X. Since X is $G\delta S$-closed compact, there exists a finite subset I_0 of I such that $X = \cup \{f^{-1}(V_\alpha) : \alpha \in I_0\}$. Since f is surjective, $Y = \cup \{V_\alpha : \alpha \in I_0\}$, which is finite subcover for Y. Therefore Y is nearly compact.

(ii) Let $\{V_\alpha : \alpha \in I\}$ be any countable regular open cover of Y. Since f is almost contra $g\delta s$-continuous, $\{f^{-1}(V_\alpha) : \alpha \in I\}$ is countable $g\delta s$-closed cover of X. Since X is countably $G\delta S$-closed compact, there exists a finite subset I_0 of I such that $X = \cup \{f^{-1}(V_\alpha) : \alpha \in I_0\}$. Since f is surjective, $Y = \cup \{V_\alpha : \alpha \in I_0\}$ is finite subcover for Y. Therefore Y is nearly countably compact.

(iii) Let $\{V_\alpha : \alpha \in I\}$ be any regular open cover of Y. Since f is almost contra $g\delta s$-continuous, $\{f^{-1}(V_\alpha) : \alpha \in I\}$ is $g\delta s$-closed cover of X. Since X is $G\delta S$-Lindelof, there exists a countable subset I_0 of I such that $X = \cup \{f^{-1}(V_\alpha) : \alpha \in I_0\}$. Since f is surjective, $Y = \cup \{V_\alpha : \alpha \in I_0\}$ is finite subcover for Y. Therefore Y is nearly Lindelof.
Theorem 3.3.40. Let $f : X \to Y$ be an almost contra $g\delta s$-continuous surjection. Then, the following properties hold

(i) if X is $g\delta s$-compact, then Y is S-closed.

(ii) if X is countably $g\delta s$-closed, then Y is countably S-closed.

(iii) if X is $g\delta s$-Lindelof, then Y is S-Lindelof.

Proof. (i) Let $\{V_\alpha : \alpha \in I\}$ be any regular closed cover of Y. Since f is almost contra $g\delta s$-continuous, $\{f^{-1}(V_\alpha) : \alpha \in I\}$ is $g\delta s$-open cover of X. Since X is $g\delta s$-compact, there exists a finite subset I_0 of I such that $X = \bigcup \{f^{-1}(V_\alpha) : \alpha \in I_0\}$. Since f is surjective, $Y = \bigcup \{V_\alpha : \alpha \in I_0\}$ is finite subcover for Y. Therefore, Y is S-closed.

(ii) Let $\{V_\alpha : \alpha \in I\}$ be any countable regular closed cover of Y. Since f is almost contra $g\delta s$-continuous, $\{f^{-1}(V_\alpha) : \alpha \in I\}$ is countable $g\delta s$-open cover of X. Since X is countably $g\delta s$-compact, there exists a finite subset I_0 of I such that $X = \bigcup \{f^{-1}(V_\alpha) : \alpha \in I_0\}$. Since f is surjective, $Y = \bigcup \{V_\alpha : \alpha \in I_0\}$ is finite subcover for Y. Therefore, Y is countably S-closed.

(iii) Let $\{V_\alpha : \alpha \in I\}$ be any regular closed cover of Y. Since f is almost contra $g\delta s$-continuous, $\{f^{-1}(V_\alpha) : \alpha \in I\}$ is $g\delta s$-open cover of X. Since X is $g\delta s$-Lindelof, there exists a countable subset I_0 of I such that $X = \bigcup \{f^{-1}(V_\alpha) : \alpha \in I_0\}$. Since f is surjective, $Y = \bigcup \{V_\alpha : \alpha \in I_0\}$ is finite subcover for Y. Therefore, Y is S-Lindelof.
Definition 3.3.41. A function $f : X \rightarrow Y$ is said to be almost $g\delta s$-continuous if $f^{-1}(V)$ is $g\delta s$-open in X for each regular open set V of Y.

Theorem 3.3.42. Let $f : X \rightarrow Y$ be an almost contra $g\delta s$-continuous and almost $g\delta s$-continuous surjection. Then, the following properties hold

(i) if X is mildly $g\delta s$-closed, then Y is nearly compact.

(ii) if X is mildly countably $G\delta S$-closed, then Y is nearly countably compact.

(iii) if X is mildly $g\delta s$-Lindelof, then Y is nearly Lindelof.

Proof. (i) Let $\{V_\alpha : \alpha \in I\}$ be any regular open cover of Y. Since f is almost contra $g\delta s$-continuous and almost $g\delta s$ surjection, $\{f^{-1}(V_\alpha) : \alpha \in I\}$ is $g\delta s$-clopen cover of X. Since X is mildly δs-compact, there exists a finite subset I_0 of I such that $X = \bigcup \{f^{-1}(V_\alpha) : \alpha \in I_0\}$. Since f is surjective, $Y = \bigcup \{V_\alpha : \alpha \in I_0\}$, which is finite subcover for Y. Therefore Y is nearly compact.

(ii) Let $\{V_\alpha : \alpha \in I\}$ be any countable regular open cover of Y. Since f is almost contra $g\delta s$-continuous and almost $g\delta s$ surjection, $\{f^{-1}(V_\alpha) : \alpha \in I\}$ is countable $g\delta s$-closed cover of X. Since X is mildly countably $g\delta s$-compact, there exists a finite subset I_0 of I such that $X = \bigcup \{f^{-1}(V_\alpha) : \alpha \in I_0\}$. Since f is surjective, $Y = \bigcup \{V_\alpha : \alpha \in I_0\}$ is nearly Lindelof.
finite subcover for Y. Therefore Y is nearly countably compact.

(iii) Let \(\{V_\alpha : \alpha \in I\} \) be any regular open cover of Y. Since f is almost contra $g\delta s$-continuous and almost $g\delta s$ surjection, \(\{f^{-1}(V_\alpha) : \alpha \in I\} \) is $g\delta s$-closed cover of X. Since X is mildly $g\delta s$-Lindelöf, there exists a countable subset I_0 of I such that $X = \cup \{f^{-1}(V_\alpha) : \alpha \in I_0\}$. Since f is surjective, $Y = \cup \{V_\alpha : \alpha \in I_0\}$ is finite subcover for Y. Therefore Y is nearly Lindelöf.

3.4 Contra-closed graphs.

In this section, $g\delta s$-regular graphs and contra $g\delta s$-closed graphs are defined and investigated the relationships between the graphs and contra functions.

Recall that for a function $f : X \to Y$, the subset \(\{(x, f(x)) : x \in X\} \subset X \times Y \) is called the graph of f and is denoted by $G(f)$.

Theorem 3.4.1. Let $f : X \to Y$ be a function and let $g : X \to X \times Y$ be the graph function of f, defined by $g(x) = (x, f(x))$ for every $x \in X$. If g is almost contra $g\delta s$-continuous function, then f is an almost contra $g\delta s$-continuous.

Proof. Let $V \in RC(Y)$, then $X \times V = X \times Cl(\text{Int}(V)) = Cl(\text{Int}(X)) \times Cl(\text{Int}(V)) = Cl(\text{Int}(X \times V))$. Therefore $X \times V \in RC(X \times Y)$. Since g is almost contra $g\delta s$-continuous, $f^{-1}(V) = g^{-1}(X \times V) \in G\delta SO(X)$.

58
Thus, f is an almost contra $g\delta s$-continuous.

Definition 3.4.2. The graph $G(f)$ of a function $f : X \to Y$ is said to be contra $g\delta s$-closed if for each $(x, y) \in (X, Y) - G(f)$, there exist $U \in G\delta SO(X, x)$ and $V \in C(Y, y)$ such that $(U \times V) \cap G(f) = \emptyset$.

Lemma 3.4.3. [34] Let $G(f)$ be the graph of f, for any subset $A \subseteq X$ and $B \subseteq Y$, we have $f(A) \cap B = \emptyset$ if and only if $(A \times B) \cap G(f) = \emptyset$.

Lemma 3.4.4. The graph $G(f)$ of $f : X \to Y$ is contra $g\delta s$-closed in $X \times Y$ if and only if for each $(x, y) \in (X, Y) - G(f)$, there exist $U \in G\delta SO(X, x)$ and $V \in C(Y, y)$ such that $f(U) \cap V = \emptyset$.

Proof. This is a direct consequences of definition 3.4.2. and lemma 3.4.3.

Theorem 3.4.5. If $f : X \to Y$ is contra $g\delta s$-continuous and Y is Urysohn, then $G(f)$ is contra $g\delta s$-closed in $X \times Y$.

Proof. Let $(x, y) \in (X, Y) - G(f)$. Then $y \neq f(x)$. Since Y is Urysohn, there exist open sets V and W such that $f(x) \in V$, $y \in W$ and $Cl(V) \cap Cl(W) = \emptyset$. Since f is contra $g\delta s$-continuous, there exists $U \in G\delta SO(X, x)$ such that $f(U) \subset Cl(V)$. Therefore $(x, y) \in U \times Cl(W) \subset X \times Y - G(f)$. This shows that $G(f)$ contra $g\delta s$-closed in $X \times Y$.

59
Theorem 3.4.6. If \(f : X \to Y \) is \(g\delta_s \)-continuous and \(Y \) is \(T_1 \), then \(G(f) \) is contra \(g\delta_s \)-closed in \(X \times Y \).

Proof. Let \((x, y) \in (X, Y) - G(f)\). Then \(y \neq f(x) \) and there exists open set \(V \) of \(Y \) such that \(f(x) \in V, y \notin V \). Since \(f \) is \(g\delta_s \)-continuous there exists \(U \in G\delta SO(X, x) \) such that \(f(U) \subset V \). Therefore \(f(U) \cap (Y - V) = \emptyset \). Thus, for each \((x, y) \in (X, Y) - G(f)\), there exist \(U \in G\delta SO(X, x) \) and \(Y - V \in C(Y, y) \) such that \(f(U) \cap Y - V = \emptyset \). Therefore \(G(f) \) is contra \(g\delta_s \)-closed in \(X \times Y \).

Definition 3.4.7. The graph \(G(f) \) of a function \(f : X \to Y \) is said to be \(g\delta_s \)-regular (resp. strongly contra \(g\delta_s \)-closed) if for each \((x, y) \in (X, Y) - G(f)\), there exist \(g\delta_s \)-closed (resp. \(g\delta_s \)-open) set \(U \) in \(X \) containing \(x \) and \(V \in RO(Y, y) \) (resp. \(V \in RC(Y, y) \)) such that \((U \times V) \cap G(f) = \emptyset \).

Lemma 3.4.8. The graph \(G(f) \) of \(f : X \to Y \) is \(g\delta_s \)-regular (resp. strongly contra \(g\delta_s \)-closed) in \(X \times Y \) if and only if for each \((x, y) \in (X, Y) - G(f)\), there exist \(g\delta_s \)-closed (resp. \(g\delta_s \)-open) set \(U \) in \(X \) containing \(x \) and \(V \in RO(Y, y) \) (resp. \(V \in RC(Y, y) \)) such that \(f(U) \cap V = \emptyset \).

Proof. Follows from lemma 3.4.3.

Theorem 3.4.9. If \(f : X \to Y \) is almost \(g\delta_s \)-continuous and \(Y \) is \(T_2 \), then \(G(f) \) is \(g\delta_s \)-regular in \(X \times Y \).
Proof. Let \((x, y) \in (X, Y) - G(f)\). Then \(y \neq f(x)\). Since \(Y\) is \(T_2\), there exists regular open sets \(V\) and \(W\) in \(Y\), such that \(f(x) \in V\), \(y \in W\) and \(V \cap W = \emptyset\). Since \(f\) is almost \(g\delta s\)-continuous \(f^{-1}(V)\) is \(g\delta s\)-closed set in \(X\) containing \(x\). Set \(U = f^{-1}(V)\), then \(f(U) \subset V\). Therefore \(f(U) \cap W = \emptyset\) and \(G(f)\) is \(g\delta s\)-regular in \(X \times Y\).

Theorem 3.4.10. Let \(f : X \to Y\) have a \(g\delta s\)-regular \(G(f)\). If \(f\) is injective, then \(X\) is \(g\delta s\)-\(T_0\).

Proof. Let \(x\) and \(y\) be any two distinct points of \(X\). Then, \((x, f(y)) \in (X, Y) - G(f)\). Since \(G(f)\) is \(g\delta s\)-regular, there exists \(g\delta s\)-closed set \(U\) in \(X\) containing \(x\) and \(V \in RO(Y, f(y))\) such that \(f(U) \cap V = \emptyset\) by lemma 3.4.8. and hence \(U \cap f^{-1}(V) = \emptyset\). Therefore \(y \notin U\). Thus, \(y \in X - U\) and \(x \notin X - U\) and \(X - U\) is \(g\delta s\)-open set in \(X\). This implies \(X\) is \(g\delta s\)-\(T_0\).

Theorem 3.4.11. Let \(f : X \to Y\) have a \(g\delta s\)-regular graph \(G(f)\). If \(f\) is surjective, then \(Y\) is weakly Hausdorff.

Proof. Let \(y_1\) and \(y_2\) be any two distinct points of \(Y\). Since \(f\) is surjective, \(f(x) = y_1\) for some \(x \in X\) and \((x, y_2) \in (X, Y) - G(f)\). Since \(G(f)\) is \(g\delta s\)-regular, there exist \(g\delta s\)-closed set \(U\) in \(X\) containing \(x\) and \(F \in RO(Y, y_2)\) such that \(f(U) \cap F = \emptyset\) by lemma 3.4.8. and hence \(y_1 \notin F\). Then \(y_1 \in Y - F\) and \(y_2 \notin Y - F\) and \(Y - F\) is regular closed set in \(Y\). This implies \(Y\) is weakly Hausdorff.
Theorem 3.4.12. Let \(f : X \to Y \) have a strongly contra \(g\delta s \)-closed graph \(G(f) \). If \(f \) is an almost contra \(g\delta s \)-continuous injection, then \(X \) is \(g\delta s - T_2 \).

Proof. Let \(x \) and \(y \) be any two distinct points of \(X \). Since \(X \) is injective, \(f(x) \neq f(y) \). Then, \((x, f(y)) \in (X, Y) - G(f) \). Since \(G(f) \) is strongly contra \(g\delta s \)-closed, by lemma 3.4.8 there exist \(g\delta s \)-open set \(U \) in \(X \) containing \(x \) and \(V \in RC(Y, y) \) such that \(f(U) \cap V = \emptyset \) and hence \(U \cap f^{-1}(V) = \emptyset \). Since \(f \) is an almost contra \(g\delta s \)-continuous, \(f^{-1}(V) \) is \(g\delta s \)-open in \(X \) containing \(y \). This shows that \(X \) is \(g\delta s - T_2 \).

Definition 3.4.13. A function \(f : X \to Y \) is called almost weakly \(g\delta s \)-continuous if for each \(x \in X \) and each open set \(V \) of \(Y \) containing \(f(x) \), there exists \(U \in G\delta SO(X, x) \) such that \(f(U) \subseteq Cl(V) \).

Theorem 3.4.14. If \(f : X \to Y \) is almost weakly \(g\delta s \)-continuous and \(Y \) is Urysohn, then \(G(f) \) strongly contra \(g\delta s \)-closed in \(X \times Y \).

Proof. Let \((x, y) \in (X, Y) - G(f) \) implies, \(y \neq f(x) \). Since \(Y \) is Urysohn there exist open sets \(V \) and \(W \) in \(Y \) such that \(y \in V \), \(f(x) \in W \) and \(Cl(V) \cap Cl(W) = \emptyset \). Since \(f \) is almost weakly \(g\delta s \)-continuous, by definition 4.13 there exists \(U \in G\delta SO(X, x) \) such that \(f(U) \subseteq Cl(W) \). This shows that \(f(U) \cap Cl(V) = f(U) \cap Cl(Int(V)) = \emptyset \), where \(Cl(Int(V)) \in RC(Y) \) and hence by lemma 3.4.8. we have \(G(f) \) strongly contra \(g\delta s \)-closed in \(X \times Y \).
Theorem 3.4.15. If $f : X \rightarrow Y$ is almost contra $g\delta_s$-continuous, then f is almost weakly $g\delta_s$-continuous.

Proof. Let $x \in X$ and V be any open set of Y containing $f(x)$. Then $Cl(V)$ is a regular closed set of Y containing $f(x)$. Since f is almost contra $g\delta_s$-continuous by theorem 3.3.11. there exists $g\delta_s$-open set in X containing x such that $f(U) \subset Cl(V)$. By definition 3.4.13. f is almost weakly $g\delta_s$-continuous.

Corollary 3.4.16. If $f : X \rightarrow Y$ is almost contra $g\delta_s$-continuous and Y is Urysohn, then $G(f)$ strongly contra $g\delta_s$-closed in $X \times Y$.

We recall that a topological space X is said to be extremely disconnected (E.D) if the closure of every open set of X is open in X.

Theorem 3.4.17. Let Y be E.D. Then a function $f : X \rightarrow Y$ is almost contra $g\delta_s$-continuous if and only if it is almost $g\delta_s$-continuous.

Proof. Let $x \in X$ and V be any regular open set of Y containing $f(x)$. Since Y is E.D then V is clopen and hence V is regular closed set of Y containing $f(x)$. Since f is almost contra $g\delta_s$-continuous by theorem there exists $g\delta_s$-open set in X containing x such that $f(U) \subset V$. Then f is almost $g\delta_s$-continuous.

Conversely, let F be any regular closed set of Y. Since Y is E.D, F is also regular open and $f^{-1}(F)$ is $g\delta_s$-open in X. This shows that f is almost contra $g\delta_s$-continuous.