Chapter 5

ON WEAKLY URYSOHN SPACES

In this chapter, we have studied and investigated weakly Urysohn spaces and their properties.

A topological space X is said to be weakly Urysohn if for each x, y in X with distinct closures there are neighbourhoods U and V of x and y respectively such that the closures of U and V are disjoint. In this chapter, a characterization of R_0-spaces is given. It is noticed that a regular R_0-space is weakly Urysohn and a weakly Urysohn space is R_1. Also a weakly Urysohn T_0-space is a Urysohn space.

5.1 Introduction

A topological space X is said to be a Urysohn space \cite{21} if for each pair of distinct points x, y in X there are neighbourhoods U, V of x and y respectively such that $\overline{U} \cap \overline{V} = \emptyset$. It is known that every regular T_1-space is Urysohn and that every Urysohn space is Hausdorff. In the present chapter a weaker form of Urysohn spaces is proposed. It is observed that a regular R_0-space is weakly Urysohn and a weakly Urysohn space is R_1. Also a weakly Urysohn T_0-space is a Urysohn space.
space. If X is any topological space and $x \in X$ then \bar{x} stands for the closure of $\{x\}$.

5.2 Weakly Urysohn spaces

Definition 5.2.1. A topological space X is said to be weakly Urysohn if for each pair of points x, y in X with $\bar{x} \neq \bar{y}$ there are neighbourhoods U and V of x and y respectively such that $\bar{U} \cap \bar{V} = \phi$.

Every Urysohn space is weakly Urysohn, but not conversely.

Example 5.2.2. Let $X = \{a, b, c\}$ and $\tau = \{X, \phi, \{a\}, \{b, c\}\}$ be a topology on X. Then $\{X, \phi, \{b, c\}, \{a\}\}$ is the family of all closed sets. Note that X is a weakly Urysohn space. We have $\bar{a} = \{a\}, \bar{b} = \{b, c\}$ and $\bar{c} = \{b, c\}$. Now $\bar{a} \neq \bar{b}$. Let $U = \{a\}$ and $V = \{b, c\}$. Clearly U and V are neighbourhoods of a and b respectively such that $\bar{U} \cap \bar{V} = \{a\} \cap \{b, c\} = \{a\} \cap \{b, c\} = \phi$. Also $\bar{a} \neq \bar{c}$. Let $U = \{a\}$ and $V = \{b, c\}$. Then U and V are neighbourhoods of a and c respectively such that $\bar{U} \cap \bar{V} = \phi$. Therefore X is weakly Urysohn. X is not a Urysohn Space; for $b, c \in X$ with $b \neq c$ there do not exist neighbourhoods U and V of b and c respectively with $\bar{U} \cap \bar{V} = \phi$. Therefore X is not Urysohn.

Theorem 5.2.3. The following statements about a topological space X are equivalent

(i) for each open set G in X, if $x \in G$ then $\bar{x} \subset G$.

79
(ii) for each $x, y \in X$ either $\overline{x} = \overline{y}$ or $\overline{x} \cap \overline{y} = \emptyset$.

(iii) for each $x, y \in X$ if $x \notin \overline{y}$ then $y \notin \overline{x}$.

Proof. (i) ⇒ (iii) Suppose (i) holds. Let $x, y \in X$ and $x \notin \overline{y}$. Then $x \in X - \overline{y}$. Now $X - \overline{y}$ is an open set and $x \in X - \overline{y}$. From (i) it follows that $\overline{x} \subset X - \overline{y}$. Therefore $\overline{x} \cap \overline{y} = \emptyset$ and hence $y \notin \overline{x}$. Thus (iii) holds.

(iii) ⇒ (i) Suppose (iii) holds. Let G be an open set in X and $x \in G$. Then $x \notin X - G$. Let $y \in X - G$. Then $\overline{y} \subset X - G$. Therefore, $x \notin \overline{y}$. From (iii), $y \notin \overline{x}$. Therefore $y \in X - \overline{x}$. Thus $X - G \subset X - \overline{x}$. Therefore $\overline{x} \subset G$.

Thus (i) holds. Thus (i) and (iii) are equivalent. The equivalence of (ii) and (i) is proved in [22].

Definition 5.2.4. [21] A topological space X is said to be R_0 if for each $x, y \in X$, $x \notin \overline{y}$ implies $y \notin \overline{x}$.

Definition 5.2.5. [51] A topological space X is said to be R_1 if for every pair of points x, y of X with $\overline{x} \neq \overline{y}$ implies x and y have disjoint neighbourhoods.

Theorem 5.2.6. The following statements about a topological space X are true:

(i) a regular R_0-space is weakly Urysohn.
(ii) a weakly Urysohn space is R_1.

(iii) a weakly Urysohn T_0-space is Urysohn.

Proof. (i) Let X be regular R_0-space. Let $x, y \in X$ with $x \neq y$. From theorem 5.2.3. (ii), $\bar{x} \cap \bar{y} = \emptyset$ which implies that $x \notin \bar{y}$. Therefore there are open sets $U(x)$ and $V(y)$ containing x and y respectively such that $U(x) \cap V(y) = \emptyset$.

Therefore $U(x) \cap \bar{V}(y) = \emptyset$. Now $x \in U(x)$ and X is regular. Therefore there exists an open set W containing x such that $x \in W \subset \bar{W} \subset U(x)$. Therefore $\bar{W} \cap \bar{V}(y) = \emptyset$. Hence X is weakly Urysohn.

(ii) Let X be weakly Urysohn. Let $x, y \in X$ with $x \neq y$. Then by definition there are neighbourhoods U and V of x and y respectively such that $\bar{U} \cap \bar{V} = \emptyset$.

Therefore $\bar{U} \cap \bar{V} = \emptyset$. Hence X is a R_1-space.

(iii) Let X be a weakly Urysohn T_0-space. Let $x, y \in X$ with $x \neq y$. Since X is T_0, $x \neq y$. Therefore there are neighbourhoods U and V of x and y respectively such that $\bar{U} \cap \bar{V} = \emptyset$. Hence X is a Urysohn space.