Fig. 1.1 Transition between vibrational levels showing Rayleigh and Raman scattering

Fig. 1.2 Human hands as an example of chiral object, with two enantiomers of amino acid

Fig. 1.3 Optical activity of Chiral compounds

Fig. 1.4 Energy level diagram for definition of VCD

Fig. 1.5 Block diagram of the optical-electronic layout of Fourier Transform Vibrational Circular Dichroism spectrometer

Fig. 1.6 Thermo Scientific Nicolet NXR 6700 FT-IR and FT-Raman spectrometer

Fig. 1.7 Bruker's MultiRAM spectrometer (a), Raman ScopeIII (b), Bruker Vertex 80 FT-IR spectrometer (c)

Fig. 2.1 Molecular structure of 2MIC (a), 2MIT (b)

Fig. 2.2 PES scanning for bending of isocyanate moiety

Fig. 2.3 PES scanning for bending of isothiocyanate moiety

Fig. 2.4 PES scans of 2MIC (a), 2MIT (b) for the dihedral angle \(\tau_{1,2} \)

Fig. 2.5 Optimized structures of conformers of 2MIC (a), 2MIT (b) along with the direction of dipole moment vector

Fig. 2.6 Observed FT-IR (a), FT-Raman (b) spectra of 2MIC

Fig. 2.7 Comparison of Observed IR (a), calculated IR (b) spectra of 2MIC

Fig. 2.8 Comparison of Observed Raman (a) with calculated Raman (b) spectra of 2MIC

Fig. 2.9 Explanation of multiplet Fermi resonance as observed in 2MIC (a), with regard to change in intensity and band position (b)

Fig. 2.10 Observed FT-IR (a), FT-Raman (b) spectra of 2MIT

Fig. 2.11 Comparison of observed IR (a), calculated IR (b) spectra of 2MIT

Fig. 2.12 Comparison of observed Raman (a), calculated Raman (b) spectra of 2MIT
Fig. 3.1 Optimized Structure of 3CFP (a) and 4CFP (b) along with dipole moment component
Fig. 3.2 Single crystal XRD structure of 3CFP viewed along b axis (a) and 4CFP viewed along a axis (b)
Fig. 3.3 Observed FT-IR (a) and FT-Raman (b) spectra of 3CFP
Fig. 3.4 Observed FT-IR (a) and FT-Raman (b) spectra of 4CFP
Fig. 3.5 Observed FT-IR spectra of 3CFP (a) and 4CFP (b)
Fig. 3.6 Observed FT-Raman spectra of 3CFP (a) and 4CFP (b)
Fig. 3.7 Observed FT-IR (a) and FT-Raman (b) spectra of 3CFP
Fig. 3.8 Observed FT-IR (a) and FT-Raman (b) spectra of 4CFP
Fig. 4.1 Molecular structure of 3MPI (a), 4MPI (b) and 4FPI(c)
Fig. 4.2 Potential Energy Surface scan plot of 3MPI
Fig. 4.3 Potential Energy Surface scan plot of 4MPI
Fig. 4.4 Potential Energy Surface scan plot of 4FPI
Fig. 4.5 Conformers of 3MPI
Fig. 4.6 Conformers of 4MPI
Fig. 4.7 The single Conformer of 4FPI
Fig. 4.8 Observed FT-IR (a) and FT-Raman (b) spectra of 3MPI
Fig. 4.9 Observed FT-IR (a) and FT-Raman (b) spectra of 4MPI
Fig. 4.10 Observed FT-IR (a) and FT-Raman (b) spectra of 4FPI
Fig. 4.11 Comparison of observed FT-IR spectra of 3MPI (a), 4MPI (b) and 4FPI (c)
Fig. 4.12 Comparison of observed FT-Raman spectra of 3MPI (a), 4MPI (b) and 4FPI (c)
Fig. 4.13 Simulated VCD spectra of conformer C-I (a), conformer C-II (b), conformer C-III (c) and conformer C-IV (d) of 3MPI
Fig. 4.14 Simulated VCD spectra of conformer C-I (a), conformer C-II (b), weighted VCD (c), observed IR (d) of 4MPI
Fig. 4.15 Simulated VCD (a) and observed FT-IR (b) spectrum of 4FPI
Fig. 4.16 Comparison of calculated VCD spectra of 3MPI conformer C-I and the corresponding magnitude of the ζ angles (dots) obtained from calculations
Fig. 4.17 Comparison of calculated VCD spectra of 3MPI conformer C-II, C-III, C-IV and the corresponding magnitude of the ξ angles (dots) obtained from calculations

Fig. 4.18 Comparison of calculated VCD spectra of 4MPI conformer C-I, C-II, 4FPI and the corresponding magnitude of the ξ angles (dots) obtained from calculations

Fig. 5.1 Molecular structure of L-(-)-malic acid with numbering

Fig. 5.2 Potential Energy Surface scan plot of L-(-)-malic acid

Fig. 5.3 Conformers of L-(-)-malic acid

Fig. 5.4 Observed FT-IR spectrum of L-(-)-malic acid

Fig. 5.5 Observed FT-Raman spectrum of L-(-)-malic acid

Fig. 5.6 Experimental FT-IR spectrum (a) compared with the computed spectra (b) of L-(-)-malic acid monomer

Fig. 5.7 Experimental FT-Raman spectrum (a) compared with the computed spectra (b) of L-(-)-malic acid monomer

Fig. 5.8 Experimental FT-IR spectrum compared with the computed spectra of L-(-)-malic acid experimental (a); monomer (b); Dimer (c)

Fig. 5.9 Optimized dimer structure of L-(-)-malic acid

Fig. 5.10 Comparison of Experimental FT-IR (a) and DFT calculated spectra (b) black color line spectra for deuterated and red dashed line spectrum for undeuterated spectrum of L-(-)-malic acid

Fig. 5.11 Robust modes plot for conformer C-I of L-(-)-malic acid

Fig. 5.12 Robust modes plot for conformer C-II of L-(-)-malic acid

Fig. 5.13 Computed VCD plots conformer C-I (a), conformer C-II (b), weighted average of C-I and C-II (c) of L-(-)-malic acid

Fig. 6.1 Molecular structure of 4-BrNCS, 4-C1NCS, 4-BrNCO and 4-CINCO

Fig. 6.2 PES scan curve of dihedral angle α for isothiocyanates

Fig. 6.3 (a). Optimized structure of 4-BrNCS (a) and 4-CINCS (b)

(b). Optimized structure of 4-BrNCO (a) and 4-CINCO (b)
Fig. 6.4 Observed FT-IR (a) and Raman (b) spectra of 4-BrNCS
Fig. 6.5 Simulated (a) and observed FT-IR (b) spectra of 4-BrNCS
Fig. 6.6 Simulated (a) and observed FT-Raman (b) spectra of 4-BrNCS
Fig. 6.7 Observed IR (a) and Raman (b) spectra of 4-C1NCS
Fig. 6.8 Simulated (a) and observed FT-IR (b) spectra of 4-C1NCS
Fig. 6.9 Simulated (a) and observed FT-Raman (b) spectra of 4-C1NCS
Fig. 6.10 Observed IR (a) and Raman (b) spectra of 4-BrNCO
Fig. 6.11 Simulated (a) and observed FT-IR (b) spectra of 4-BrNCO
Fig. 6.12 Simulated (a) and observed FT-Raman (b) spectra of 4-BrNCO
Fig. 6.13 Observed IR (a) and Raman (b) spectra of 4-C1NCO
Fig. 6.14 Simulated (a) and observed FT-IR (b) spectra of 4-C1NCO
Fig. 6.15 Simulated (a) and observed FT-Raman (b) spectra of 4-C1NCO
Fig. 6.16 Comparison of calculated VCD spectra (b) of 4-BrNCS with the observed IR spectra (a).
Fig. 6.17 Comparison of calculated VCD spectra (b) of 4-C1NCS with the observed IR spectra (a).
Fig. 6.18 Comparison of calculated VCD spectra (b) of 4-C1NCO with the observed IR spectra (a).
Fig. 6.19 Comparison of calculated VCD spectra (b) of 4-BrNCO with the observed IR spectra (a).