List of Figures

3.1 Comparative evolution of the clustering strength $b(z)$ with redshift for point mass and non-point mass systems for different values of Ω_0 and at the present value of $b = 0.85$ and at $\epsilon = 0.10$ 57

3.2 Comparative evolution of the clustering strength $b(z)$ with redshift for point mass and non-point mass systems for different values of Ω_0 and at the present value of $b = 0.85$ and at $\epsilon = 0.15$ 58

3.3 Comparative evolution of the clustering strength $b(z)$ with redshift for point mass and non-point mass systems for different values of Ω_0 and at the present value of $b = 0.75$ and at $\epsilon = 0.10$ 59

3.4 Comparative evolution of the clustering strength $b(z)$ with redshift for point mass and non-point mass systems for different values of Ω_0 and at the present value of $b = 0.75$ and at $\epsilon = 0.15$ 60

3.5 Comparative evolution of the clustering strength $b(z)$ with redshift for point mass and non-point mass systems for different values of Ω_0 and at the present value of $b = 0.65$ and at $\epsilon = 0.10$ 61
3.6 Comparative evolution of the clustering strength $b(z)$ with redshift for point mass and non-point mass systems for different values of Ω_0 and at the present value of $b = 0.65$ and at $\epsilon = 0.15$.

5.1 Comparative study of distribution function at $b = 0.20$, $\bar{N} = 1$ and at $\epsilon/R_1 = 0.10$ for $i = 1, 2, 3, 4, 5$ 106

5.2 Comparative study of distribution function at $b = 0.26$, $\bar{N} = 10$ and at $\epsilon/R_1 = 0.10$ for $i = 1, 2, 3, 4, 5$ 107

5.3 Comparative study of distribution function at $b = 0.32$, $\bar{N} = 10$ and at $\epsilon/R_1 = 0.10$ for $i = 1, 2, 3, 4, 5$ 108

5.4 Comparative study of distribution function at $b = 0.38$, $\bar{N} = 10$ and at $\epsilon/R_1 = 0.10$ for $i = 1, 2, 3, 4, 5$ 109

5.5 Comparative study of distribution function at $b = 0.24$, $\bar{N} = 10$ and at $\epsilon/R_1 = 0.15$ for $i = 1, 2, 3, 4, 5$ 110

5.6 Comparative study of distribution function at $b = 0.26$, $\bar{N} = 10$ and at $\epsilon/R_1 = 0.15$ for $i = 1, 2, 3, 4, 5$ 111

5.7 Comparative study of distribution function at $b = 0.34$, $\bar{N} = 10$ and at $\epsilon/R_1 = 0.15$ for $i = 1, 2, 3, 4, 5$ 112

5.8 Comparative study of distribution function at $b = 0.4$, $\bar{N} = 10$ and at $\epsilon/R_1 = 0.15$ for $i = 1, 2, 3, 4, 5$ 113

5.9 Comparative study of distribution function at $b = 0.2$, $\bar{N} = 10$ and at $\epsilon/R_1 = 0.2$ for $i = 1, 2, 3, 4, 5$ 114
5.10 Comparative study of distribution function at $b = 0.26$, $\bar{N} = 10$

and at $\epsilon/R_1 = 0.2$ for $i = 1, 2, 3, 4, 5$ \ldots 115

5.11 Comparative study of distribution function at $b = 0.36$, $\bar{N} = 10$

and at $\epsilon/R_1 = 0.2$ for $i = 1, 2, 3, 4, 5$ \ldots 116

5.12 Comparative study of distribution function at $b = 0.42$, $\bar{N} = 10$

and at $\epsilon/R_1 = 0.2$ for $i = 1, 2, 3, 4, 5$ \ldots 117
List of Tables

3.1 Critical values of b for different values of ϵ 55
3.2 Effect of softening parameter on $1 - b_\epsilon$ for linear regime 55
3.3 Effect of softening parameter on $1 - b_\epsilon$ for non-linear regime 56

5.1 Effect of softening parameter on higher order clustering 102
5.2 Effect of higher terms on clustering at $\epsilon/R_1 = 0.1$ 103
5.3 Effect of higher terms on clustering at $\epsilon/R_1 = 0.15$ 104
5.4 Effect of higher terms on clustering at $\epsilon/R_1 = 0.2$ 105