Chapter 3

IDEALS IN DUO Γ-SEMIGROUPS

KRULL [29] proved that the nil-radical of an ideal A in a commutative ring is equal to the intersection of all minimal prime ideals containing A. SATYANARAYANA [43] obtained KRULL’s theorem [29] for commutative semigroups. ANJANEYULU [4] introduced the notions of ideals in duo semigroups and exhibit some examples and some classes of duo semigroups. He obtained KRULL’s theorem [29] for pseudo symmetric semigroups which includes duo semigroups. MADHUSUDHANA RAO, ANJANEYULU and GANGADHARA RAO [32], [33], [34] and [35] introduced the notions of duo Γ-semigroups and obtained KRULL’s theorem for pseudo and semipseudo symmetric Γ-semigroups. In this thesis we introduce and made a study on ideals in duo Γ-semigroups and obtained an analogue of KRULL’s theorem [29] in duo Γ-semigroups.

This chapter is divided into 5 sections. In section 1, the terms; left duo Γ-semigroup, right duo Γ-semigroup, duo Γ-semigroup are introduced. It is proved that a Γ-semigroup S is a duo Γ-semigroup if and only if
\[x \Gamma S^1 = S^1 \Gamma x \] for all \(x \in S \). Further it is proved that (1) every commutative Γ-semigroup is a duo Γ-semigroup (2) every normal Γ-semigroup is a duo Γ-semigroup (3) every quasi commutative Γ-semigroup is a duo Γ-semigroup (4) every generalized Γ-semigroup is a left duo Γ-semigroup.

In section 2, it is proved that (1) if A is a Γ-ideal in a left duo Γ-semigroup S, then
\[A_\Gamma(a) = \{ x \in S : x \Gamma a \subseteq A \} \] is a Γ-ideal of S for all \(a \in S \), (2) if A is a Γ-ideal in a right duo Γ-semigroup S, then
\[A_\Gamma(a) = \{ x \in S : a \Gamma x \subseteq A \} \] is a Γ-ideal of S for all \(a \in S \), (3) if A is a Γ-ideal in a duo Γ-semigroup S, then
\[A_\Gamma(a) = \{ x \in S : x \Gamma a \subseteq A \} \] and
\[A_\Gamma(a) = \{ x \in S : a \Gamma x \subseteq A \} \] are Γ-ideals of S for all \(a \in S \). Further it is proved that (1) if A is a Γ-ideal in a left duo Γ-semigroup S and \(x, y \in S \), then \(x \Gamma y \subseteq A \) implies \(x \Gamma s \Gamma y \subseteq A \) for all \(s \in S \), (2) if A is a Γ-ideal in a right duo Γ-semigroup S and \(x, y \in S \), then \(x \Gamma y \subseteq A \) implies \(x \Gamma s \Gamma y \subseteq A \) for all \(s \in S \), (3) if A is a Γ-ideal in a duo Γ-semigroup S and \(x, y \in S \), then \(x \Gamma y \subseteq A \) implies \(x \Gamma s \Gamma y \subseteq A \). It is proved that if A is a Γ-ideal in a duo Γ-semigroup S and \(a, b \in S \), then (1) \(a \Gamma b \in A \) iff \(< a > \Gamma < b > \subseteq A \), (2) \(a_1 \Gamma a_2 \Gamma \ldots \Gamma a_n \Gamma a_n \subseteq A \) iff \(< a_1 > \Gamma < a_2 > \ldots \Gamma < a_n > \subseteq A \), (3) for any natural number \(n \), \((a \Gamma)^{n-1} a \subseteq A \) iff \(< a > \Gamma (a \Gamma)^{n-1} \subseteq A \). It is also proved that in a duo Γ-semigroup S, a Γ-ideal P is prime Γ-ideal if and only if P is a completely prime Γ-ideal. Further it is proved that a
Γ-ideal A of a duo Γ-semigroup S is a completely semiprime Γ-ideal of S if and only if A is a semiprime Γ-ideal.

In section 3, it is proved that, if \(A_1 = \) the intersection of all completely prime Γ-ideals of S containing A, \(A_2 = \{ x \in S : (x \Gamma)^{n-1} x \subseteq A \) for some natural number \(n \} \), \(A_3 = \) the intersection of all prime Γ-ideals of S containing A, \(A_4 = \{ x \in S : (< x > \Gamma)^{n-1} < x > \subseteq A \) for some natural number \(n \} \) for a Γ-ideal A of a Γ-semigroup S, then \(A \subseteq A_4 \subseteq A_3 \subseteq A_2 \subseteq A_1 \). If A is a Γ-ideal of a commutative/duo Γ-semigroup then it is proved that \(A_1 = A_2 = A_3 = A_4 \). It is proved that if A is a Γ-ideal in a duo Γ-semigroup S, then (1) \(A_2 \) is the minimal completely semiprime Γ-ideal of S containing A, (2) \(A_4 \) is the minimal semiprime Γ-ideal of S containing A. It is proved that if \(a \in \sqrt{A} \), then there exist a positive integer \(n \) such that \((a \Gamma)^{n-1} a \subseteq A \). Further if A is a Γ-ideal of a duo Γ-semigroup S then it is proved that (1) \(A_1 = \) the intersection of all completely prime Γ-ideals of S containing A, (2) \(A'_1 \) = the intersection of all minimal completely prime Γ-ideals of S containing A, (3) \(A''_1 \) = the minimal completely semiprime Γ-ideal of S containing A, (4) \(A_2 = \{ x \in S : (x \Gamma)^{n-1} x \subseteq A \) for some natural number \(n \} \), (5) \(A_3 = \) the intersection of all prime Γ-ideals of S containing A, (6) \(A'_3 \) = the intersection of all minimal prime Γ-ideals of S containing A, (7) \(A''_3 \) = the minimal semiprime Γ-ideal of S containing A, (8) \(A_4 = \{ x \in S : (< x > \Gamma)^{n-1} < x > \subseteq A \) for some natural number \(n \} \) are equal.

In section 4, the terms; Archimedean Γ-semigroup and strongly Archimedean Γ-semigroup are introduced. It is proved that if S is a duo Γ-semigroup, then the conditions (1) S is strongly Archimedean, (2) S is Archimedean, (3) S has no proper completely prime Γ-ideals and (4) S has no proper prime Γ-ideals; are equivalent.

In section 5, the terms; left simple Γ-semigroup, right simple Γ-semigroup, simple Γ-semigroup are introduced. It is proved that (1) a Γ-semigroup S is a left simple Γ-semigroup if and only if \(S \Gamma a = S \) for all \(a \in S \), (2) a Γ-semigroup S is a right simple Γ-semigroup if and only if \(a \Gamma S = S \) for all \(a \in S \), (3) a Γ-semigroup S is a simple Γ-semigroup if and only if \(S \Gamma a \Gamma S = S \) for all \(a \in S \). It is also proved that if S is a left simple Γ-semigroup or a right simple Γ-semigroup then S is a simple Γ-semigroup. Further it is proved that if S is a duo Γ-semigroup and \(a \in S \) then (1) \(a \) is regular, (2) \(a \) is
left regular, (3) a is right regular, (4) a is intra regular and (5) a is semisimple are equivalent.

The contents of chapter 3 are published in “International eJournal of Mathematics and Engineering” under the title ‘Prime Γ -ideals in duo Γ -semigroups’ [17].

3.1. DUO Γ-SEMIGROUPS

Duo Γ-semigroups played an important role in the theory of Γ-semigroups. In this section the terms; left duo Γ-semigroup, right duo Γ-semigroup, duo Γ-semigroup are introduced. It is proved that a Γ- semigroup S is a duo Γ- semigroup if and only if $x\Gamma S^1 = S^1 \Gamma x$ for all $x \in S$. Further it is proved that (1) every commutative Γ- semigroup is a duo Γ- semigroup (2) every normal Γ-semigroup is a duo Γ- semigroup (3) every quasi commutative Γ- semigroup is a duo Γ-semigroup (4) every generalized Γ- semigroup is a left duo Γ- semigroup.

We now introduce a left duo Γ-semigroup, right duo Γ-semigroup and duo Γ-semigroup.

DEFINITION 3.1.1 : A Γ- semigroup S is said to be a left duo Γ- semigroup provided every left Γ- ideal of S is a two sided Γ- ideal of S.

DEFINITION 3.1.2 : A Γ- semigroup S is said to be a right duo Γ- semigroup provided every right Γ-ideal of S is a two sided Γ- ideal of S.

DEFINITION 3.1.3 : A Γ- semigroup S is said to be a duo Γ- semigroup provided it is both a left duo Γ- semigroup and a right duo Γ- semigroup.

THEOREM 3.1.4 : A Γ-semigroup S is a duo Γ- semigroup if and only if $x\Gamma S^1 = S^1 \Gamma x$ for all $x \in S$.

Proof : Suppose that S is a duo Γ-Semigroup and $x \in S$.

Let $t \in x\Gamma S^1$. Then $t=x\gamma s$ for some $s \in S^1$, $\gamma \in \Gamma$.

Since $S^1 \Gamma x$ is a left Γ-ideal of S, $S^1 \Gamma x$ is a Γ-ideal of S.

So $x \in S^1 \Gamma x$, $\gamma \in \Gamma$, $s \in S$, $S^1 \Gamma x$ is a Γ-ideal $\Rightarrow x\gamma s \in S^1 \Gamma x \Rightarrow t \in S^1 \Gamma x$.

Therefore $x\Gamma S^1 \subseteq S^1 \Gamma x$. Similarly we can prove that $S^1 \Gamma x \subseteq x\Gamma S^1$. Therefore $S^1 \Gamma x = x\Gamma S^1$.

Conversely suppose that $S^1 \Gamma x = x\Gamma S^1$ for all $x \in S$. Let A be a left Γ-ideal of S.

Let $x \in A$, $s \in S$ and $a \in \Gamma$. Then $xas \in x\Gamma S^1 = S^1 \Gamma x \Rightarrow xas = tfx$ for some $t \in S^1$, $\beta \in \Gamma$.
Structure and ideal theory of duo Γ-semigroups

Ideals in duo Γ-semigroups

$x \in A, t \in S, \beta \in \Gamma, A$ is a left Γ-ideal of $S \Rightarrow t\beta x \in A \Rightarrow x\alpha s \in A$.

Therefore A is a right Γ-ideal of S and hence A is a Γ-ideal of S.

Therefore S is left duo Γ-semigroup.

Similarly we can prove that S is a right duo Γ-semigroup. Hence S is duo Γ-semigroup.

THEOREM 3.1.5: Every commutative Γ-semigroup is a duo Γ-semigroup.

Proof: Suppose that S is a commutative Γ-semigroup. Therefore $x\Gamma S^1 = S^1 \Gamma x$ for all $x \in S$. By theorem 3.1.4, S is a duo Γ-semigroup.

THEOREM 3.1.6: Every normal Γ-semigroup is a duo Γ-semigroup.

Proof: Suppose that S is normal Γ-semigroup.

Then $a\Gamma S = S\Gamma a$ for all $a \in S \Rightarrow a\Gamma S^1 = S^1 \Gamma a$ for all $a \in S$.

By theorem 3.1.4, S is a duo Γ-semigroup.

THEOREM 3.1.7: Every quasi commutative Γ-semigroup is a duo Γ-semigroup.

Proof: Suppose that S is a quasi commutative Γ-semigroup. Then for $a, b \in S$, there exists $n \in \mathbb{N}$ such that $a\gamma b = (b\gamma)^n a$ for all $\gamma \in \Gamma$. Let A be a left Γ-ideal of S.

Therefore $S\Gamma A \subseteq A$. Let $a \in A$ and $s \in S$. Since S is a quasi commutative Γ-semigroup, there exists a natural number n such that $a\gamma s = (s\gamma)^n a \subseteq S\Gamma A \subseteq A$.

Therefore $a\Gamma s \subseteq A$ for all $a \in A$ and $s \in S$ and hence $A\Gamma S \subseteq A$. Therefore S is a left duo Γ-semigroup. Similarly we can prove that S is a right duo Γ-semigroup. Therefore every quasi commutative Γ-semigroup is a duo Γ-semigroup.

THEOREM 3.1.8: Every generalized commutative Γ-semigroup is a left duo Γ-semigroup.

Proof: Let S be a generalized commutative Γ-semigroup. Therefore 1 is an r-element.

Let A be a left Γ-ideal of S. Let $x \in A$ and $s \in S$.

Now $x\Gamma s = I\Gamma x\Gamma s = b\Gamma s\Gamma x = (b\Gamma s)\Gamma x \subseteq A$. Therefore A is a Γ-ideal of S.

Therefore S is a left duo Γ-semigroup.

3.2. \(\Gamma\)-IDEALS IN DUO \(\Gamma\)-SEMIGROUPS

In this section, it is proved that (1) if A is a Γ-ideal in a left duo Γ-semigroup S, then $A(a) = \{ x \in S : x\Gamma a \subseteq A \}$ is a Γ-ideal of S for all $a \in S$, (2) if A is a Γ-ideal in a
right duo Γ-semigroup S, then $A_\Gamma(a) = \{ x \in S : a\Gamma x \subseteq A \}$ is a Γ-ideal of S for all $a \in S$.

(3) If A is a Γ-ideal in a right duo Γ-semigroup S, then $A_\Gamma(a) = \{ x \in S : a\Gamma x \subseteq A \}$ and $A_\Gamma(a) = \{ x \in S : a\Gamma x \subseteq A \}$ are Γ-ideals of S for all $a \in S$. Further it is proved that (1) if A is a Γ-ideal in a left duo Γ-semigroup S and $x, y \in S$, then $x\Gamma y \subseteq A$ implies $x\Gamma s\Gamma y \subseteq A$ for all $s \in S$.

We now characterize left duo Γ-semigroups.

Theorem 3.2.1: If A is a Γ-ideal in a left duo Γ-semigroup S, then $A_\Gamma(a) = \{ x \in S : x\Gamma a \subseteq A \}$ is a Γ-ideal of S for all $a \in S$.

Proof: Let $x \in A_\Gamma(a)$ and $s \in S$. $x \in A_\Gamma(a) \Rightarrow x\Gamma a \subseteq A$.

$x\Gamma a \subseteq A$, $s \in S$, A is a Γ-ideal $\Rightarrow s\Gamma x\Gamma a \subseteq A \Rightarrow s\Gamma x \subseteq A_\Gamma(a)$.

Therefore $A_\Gamma(a)$ is a left Γ-ideal of S. Since S is a left duo Γ-semigroup, $A_\Gamma(a)$ is a Γ-ideal of S.

Theorem 3.2.2: If A is a Γ-ideal in a left duo Γ-semigroup S and $x, y \in S$, then $x\Gamma y \subseteq A$ implies $x\Gamma s\Gamma y \subseteq A$ for all $s \in S$.

Proof: Suppose that $x\Gamma y \subseteq A$. Let $s \in S$.

$x\Gamma y \subseteq A \Rightarrow x \in A_\Gamma(y)$.

$x \in A_\Gamma(y)$, $s \in S$, $A_\Gamma(y)$ is a Γ-ideal of $S \Rightarrow x\Gamma s \subseteq A_\Gamma(y) \Rightarrow x\Gamma s\Gamma y \subseteq A$.

We now characterize right duo Γ-semigroups.

Theorem 3.2.3: If A is a Γ-ideal in a right duo Γ-semigroup S, then $A_\Gamma(a) = \{ x \in S : a\Gamma x \subseteq A \}$ is a Γ-ideal of S for all $a \in S$.

Proof: Let $x \in A_\Gamma(a)$ and $s \in S$. $x \in A_\Gamma(a) \Rightarrow a\Gamma x \subseteq A$.

$a\Gamma x \subseteq A$, $s \in S$, A is a Γ-ideal $\Rightarrow a\Gamma x\Gamma s \subseteq A \Rightarrow x\Gamma s \subseteq A_\Gamma(a)$.

83
Therefore $A_t(a)$ is a right Γ-ideal of S.
Since S is a right duo Γ-semigroup, $A_t(a)$ is a Γ-ideal of S.

THEOREM 3.2.4: If A is a Γ-ideal in a right duo Γ-semigroup S and $x, y \in S$, then $x\Gamma y \subseteq A$ implies $x\Gamma_s\Gamma y \subseteq A$.

Proof: Suppose that $x\Gamma y \subseteq A$. Let $s \in S$. $x\Gamma y \subseteq A \Rightarrow y \in A_t(x)$.

$y \in A_t(x)$, $s \in S$, $A_t(x)$ is a Γ-ideal of $S \Rightarrow s\Gamma y \subseteq A_t(x) \Rightarrow x\Gamma_s\Gamma y \subseteq A$.

We now characterize duo Γ-semigroups.

COROLLARY 3.2.5: If A is a Γ-ideal in a duo Γ-semigroup S and $x, y \in S$, then $x\Gamma y \subseteq A$ implies $x\Gamma_s\Gamma y \subseteq A$.

THEOREM 3.2.6: If A is a Γ-ideal in a duo Γ-semigroup S, then $A_t(a) = \{ x \in S : x\Gamma a \subseteq A \}$ and $A_r(a) = \{ x \in S : a\Gamma x \subseteq A \}$ are Γ-ideals of S for all $a \in S$.

Proof: Since S is a duo Γ-semigroup, S is left duo Γ-semigroup and hence by theorem 3.2.1, $A_t(a) = \{ x \in S : x\Gamma a \subseteq A \}$ is a Γ-ideal of S. Again S is right duo Γ-semigroup and hence by theorem 3.2.3, $A_r(a) = \{ x \in S : a\Gamma x \subseteq A \}$ is a Γ-ideal of S.

THEOREM 3.2.7: Let A be a Γ-ideal in a duo Γ-semigroup S and $a, b \in S$. Then $a\Gamma b \in A$ if and only if $a > \Gamma < b > \subseteq A$.

Proof: Suppose that $a > \Gamma < b > \subseteq A$. Then $a\Gamma b \subseteq a > \Gamma < b > \subseteq A$.

Conversely suppose that $a\Gamma b \subseteq A$. Since S is a duo Γ-semigroup. By corollary 3.2.5, $a\Gamma b \subseteq A \Rightarrow a\Gamma_s\Gamma b \subseteq A$ for all $s \in S \Rightarrow a\Gamma S^1 \Gamma b \subseteq A$. Since A is a Γ-ideal, $a\Gamma S^1 \Gamma b \subseteq A \Rightarrow S^1 \Gamma a \Gamma S^1 \Gamma b \Gamma S^1 \subseteq A \Rightarrow a > \Gamma < b > \subseteq A$.

THEOREM 3.2.8: Let A be a Γ-ideal in a duo Γ-semigroup S.
Then $a_1 \Gamma a_2 \Gamma \ldots a_{n-1} \Gamma a_n \subseteq A$ if and only if $a_1 > \Gamma < a_2 > \ldots \Gamma < a_n > \subseteq A$.

Proof: Suppose that $a_1 > \Gamma < a_2 > \ldots \Gamma < a_n > \subseteq A$.

Then $a_1 \Gamma a_2 \Gamma \ldots a_{n-1} \Gamma a_n \subseteq a_1 > \Gamma < a_2 > \ldots \Gamma < a_n > \subseteq A$.

Conversely suppose that $a_1 \Gamma a_2 \Gamma \ldots a_{n-1} \Gamma a_n \subseteq A$.

Then for any $t \in a_1 > \Gamma < a_2 > \ldots \Gamma < a_n >$, we have $t = s_1 a_1 \beta_1 s_2 a_2 \beta_2 \ldots a_n a_n \beta_n s_{n+1}$, where $s_i \in S$ and $a_i, \beta_i \in \Gamma$.

Since $x, y \in S$, $x\Gamma y \subseteq A \Rightarrow x\Gamma_s\Gamma y \subseteq A$, we have $t \in A$.

84
Therefore $<a_1> \Gamma <a_2> \ldots \Gamma <a_n> \subseteq A$.

COROLLARY 3.2.9: Let A be a Γ-ideal in a duo Γ-semigroup S. Then for any natural number n, $(a \Gamma)^{n-1}a \subseteq A$ if and only if $(<a \Gamma>)^{n-1} <a> \subseteq A$.

Proof: The proof follows from theorem 3.2.8, by taking $a_1 = a_2 = a_3 = \ldots = a_n = a$.

THEOREM 3.2.10: Let S be a duo Γ-semigroup. A Γ-ideal P of S is prime Γ-ideal if and only if P is a completely prime Γ-ideal.

Proof: Suppose that P is a prime Γ-ideal of Γ-semigroup S. Let $x, y \in S$ and $x\Gamma y \subseteq P$. Now $x\Gamma y \subseteq P, P$ is a Γ-ideal $\Rightarrow x\Gamma y \Gamma S^1 \subseteq P$.

Since S is duo Γ-semigroup, $x\Gamma S^1 \Gamma y = x\Gamma y \Gamma S^1 \subseteq P$.

By corollary 2.2.7, either $x \in P$ or $y \in P$. Hence P is a completely prime Γ-ideal.

Conversely suppose that P is a completely prime Γ-ideal of S.

By theorem 2.2.8, P is a prime Γ-ideal of S.

COROLLARY 3.2.11: Let S be a commutative Γ-semigroup. A Γ-ideal P of S is prime Γ-ideal if and only if P is a completely prime Γ-ideal.

THEOREM 3.2.12: Let S be a duo Γ-semigroup. A Γ-ideal A of S is completely semiprime iff semiprime.

Proof: Suppose that A is a completely semiprime Γ-ideal of S.

By theorem 2.3.7, A is a semiprime Γ-ideal of S.

Conversely Suppose that A is a semiprime Γ-ideal of S. Let $x \in S$ and $x\Gamma x \subseteq A$.

Now $x\Gamma x \subseteq A \Rightarrow s\Gamma x \Gamma x \subseteq A$ for all $s \in S \Rightarrow x\Gamma S \Gamma x \subseteq A$

$\Rightarrow x \in A$, since A is semiprime. Therefore A is a completely semiprime Γ-ideal of S.

COROLLARY 3.2.13: Let S be a commutative Γ-semigroup. A Γ-ideal A of S is completely semiprime iff semiprime.

3.3. Γ-RADICALS IN DUO Γ-SEMIGROUPS

In this section, it is proved that, if $A_1 = \text{the intersection of all completely prime}$ Γ-ideals of S containing A, $A_2 = \{x \in S : (x\Gamma)^{n-1}x \subseteq A \text{ for some natural number } n \}$, $A_3 = \text{the intersection of all prime } \Gamma$-ideals of S containing A, $A_4 = \{x \in S : (<x \Gamma>)^{n-1} <x> \subseteq A \text{ for some natural number } n \}$ for a Γ-ideal A of a Γ-semigroup S, then
A \subseteq A_4 \subseteq A_3 \subseteq A_2 \subseteq A_1. If \(A \) is a \(\Gamma \)-ideal of a commutative/duo \(\Gamma \)-semigroup then it is proved that \(A_1 = A_2 = A_3 = A_4 \). It is proved that if \(A \) is a \(\Gamma \)-ideal in a duo \(\Gamma \)-semigroup \(S \), then (1) \(A_2 \) is the minimal completely semiprime \(\Gamma \)-ideal of \(S \) containing \(A \), (2) \(A_4 \) is the minimal semiprime \(\Gamma \)-ideal of \(S \) containing \(A \). It is proved that if \(a \in \sqrt{A} \), then there exist a positive integer \(n \) such that \((a\Gamma)^{n-1}a \not\subseteq A \). Further if \(A \) is a \(\Gamma \)-ideal of a duo \(\Gamma \)-semigroup \(S \) then it is proved that (1) \(A_1 \) = the intersection of all completely prime \(\Gamma \)-ideals of \(S \) containing \(A \), (2) \(A_4 \) = the intersection of all minimal completely prime \(\Gamma \)-ideals of \(S \) containing \(A \), (3) \(A_3 \) = the minimal completely semiprime \(\Gamma \)-ideal of \(S \) containing \(A \), (4) \(A_2 = \{ x \in S : (x\Gamma)^{n-1}x \subseteq A \text{ for some natural number } n \} \), (5) \(A_3 = \text{the intersection of all prime } \Gamma \)-ideals of \(S \) containing \(A \), (6) \(A_4 \) = the intersection of all minimal prime \(\Gamma \)-ideals of \(S \) containing \(A \), (7) \(A_5 \) = the minimal semiprime \(\Gamma \)-ideal of \(S \) containing \(A \), (8) \(A_4 = \{ x \in S : (\langle x > \Gamma)^{n-1} < x > \subseteq A \text{ for some natural number } n \} \) are equal.

NOTATION 3.3.1 : If \(A \) is a \(\Gamma \)-ideal of a \(\Gamma \)-semigroup \(S \), then we associate the following four types of sets.

\[A_1 = \text{The intersection of all completely prime } \Gamma \text{-ideals of } S \text{ containing } A. \]

\[A_2 = \{ x \in S : (x\Gamma)^{n-1}x \subseteq A \text{ for some natural number } n \} \]

\[A_3 = \text{The intersection of all prime ideals of } S \text{ containing } A. \]

\[A_4 = \{ x \in S : (\langle x > \Gamma)^{n-1} < x > \subseteq A \text{ for some natural number } n \} \]

NOTE 3.3.2 : If \(A \) is a \(\Gamma \)-ideal of a \(\Gamma \)-semigroup \(S \) then \(\text{rad } A = A_3 \) and \(\text{c.rad } A = A_4 \).

THEOREM 3.3.3 : If \(A \) is a \(\Gamma \)-ideal of a \(\Gamma \)-semigroup \(S \), then \(A \subseteq A_4 \subseteq A_3 \subseteq A_2 \subseteq A_1 \).

Proof : (i) \(A \subsetneq A_4 \) : Let \(x \in A \). Then \((\langle x > \Gamma)^{0} < x > \subseteq A \) and hence \(x \in A_4 \). \(A \subsetneq A_4 \).

(ii) \(A_4 \subsetneq A_3 \) : Let \(x \in A_4 \). Then \((\langle x > \Gamma)^{n-1} < x > \subseteq A \) for some \(n \in \mathbb{N} \).

Let \(P \) be any prime \(\Gamma \)-ideal of \(S \) containing \(A \).

Then \((\langle x > \Gamma)^{n-1} < x > \subseteq A \Rightarrow (\langle x > \Gamma)^{n-1} < x > \subseteq P. \)

Since \(P \) is prime, \(< x > \subseteq P \) and hence \(x \in P \).

Since this is true for all prime \(\Gamma \)-ideals \(P \) containing \(A \), \(x \in A_3 \). Therefore \(A_4 \subseteq A_3 \).

(iii) \(A_3 \subsetneq A_2 \) : Let \(x \in A_3 \). Suppose if possible \(x \not\in A_2 \). Then \((x\Gamma)^{n-1}x \not\subseteq A \) for all \(n \in \mathbb{N} \).

Consider \(T = \bigcup (x\Gamma)^{r-1}x \), where \(x \in S \) and \(n \) is a natural number.

Let \(a, b \in T \). Then \(a \in (x\Gamma)^{r-1}x, b \in (x\Gamma)^{s-1}x \) for some \(r, s \in \mathbb{N} \).
Therefore \(a\Gamma b = (x\Gamma)^{s-1}x\Gamma(x\Gamma)^{s-1}x = (x\Gamma)^{s+1}x \subseteq T.\)

Therefore \(T \) is a \(\Gamma \)-subsemigroup of \(S \) and \(T \) is a \(c \)-system of \(S \) and \(x \in T.\)

By theorem 2.2.4, \(P = S\setminus T \) is a completely prime \(\Gamma \)-ideal of \(S \) and \(x \not\in P.\)

By theorem 2.2.8, \(P \) is prime \(\Gamma \)-ideal of \(S \) and \(x \not\in P.\)

Therefore \(x \not\in A_3. \) It is a contradiction. \(\therefore x \in A_2 \) and hence \(A_3 \subseteq A_2. \)

(iv) \(A_2 \subseteq A_1: \) Let \(x \in A_2. \) Now \(x \in A_2 \Rightarrow (x\Gamma)^{n-1}x \subseteq A \) for some natural number \(n.\)

Let \(P \) be any completely prime \(\Gamma \)-ideal of \(S \) containing \(A.\)

Then \((x\Gamma)^{n-1}x \subseteq A \subseteq P \Rightarrow (x\Gamma)^{n-1}x \subseteq P \Rightarrow x \in P. \) Therefore \(x \in A_1. \) Therefore \(A_2 \subseteq A_1. \)

Hence \(A \subseteq A_4 \subseteq A_3 \subseteq A_2 \subseteq A_1. \)

THEOREM 3.3.4: If \(A \) is a \(\Gamma \)-ideal of a commutative \(\Gamma \)-semigroup \(S, \) then \(A_1 = A_2 = A_3 = A_4. \)

Proof: By theorem 3.3.3, \(A \subseteq A_4 \subseteq A_3 \subseteq A_2 \subseteq A_1. \) By corollary 3.2.11, in a commutative \(\Gamma \)-semigroup \(S, \) a \(\Gamma \)-ideal \(P \) is a prime \(\Gamma \)-ideal iff \(P \) is a completely prime \(\Gamma \)-ideal. \(\) So \(A_1 = A_3. \) By theorem 3.2.13, in a commutative \(\Gamma \)-semigroup \(S, \) a \(\Gamma \)-ideal \(P \) is a semiprime \(\Gamma \)-ideal iff \(P \) is a completely semiprime \(\Gamma \)-ideal. \(\) So \(A_4 = A_2. \)

Therefore \(A_1 = A_2 = A_3 = A_4. \)

NOTE 3.3.5: If \(A \) is a \(\Gamma \)-ideal in a arbitrary \(\Gamma \)-semigroup, then \(A_1, A_2, A_3, A_4 \) need not be equal.

EXAMPLE 3.3.6: Let \(S \) be the free \(\Gamma \)-semigroup generated by two alphabets \(a, b. \) It is clear that \(A = S\Gamma a\Gamma a\Gamma S \) is a \(\Gamma \)-ideal in \(S. \) Since \((a\Gamma)^3a \subseteq S\Gamma a\Gamma a\Gamma S = A, \) We have \(a \in A_2. \)

Evidently \((a\Gamma b\Gamma)^{n-1}a\Gamma b \not\subseteq S\Gamma a\Gamma a\Gamma S \) for all natural number \(n \) and thus \(a\Gamma b \not\subseteq A_2. \) Thus \(A_2 \) is not a \(\Gamma \)-ideal in \(S. \) Therefore \(A_1 \neq A_2 \) and \(A_2 \neq A_3. \)

EXAMPLE 3.3.7: Let \(S \) be the free \(\Gamma \)-semigroup over the countable infinite alphabet \(\{ x_1, x_2, \ldots \} \) and \(\Gamma \) as \(\{ \alpha_1, \alpha_2, \ldots \}. \) Consider the \(\Gamma \)-ideal \(A = \bigcup_{l(s)=1} (x > s \Gamma)^{l(s)-1}x \leq A, \) where \(l(s) \) is the length of the word \(s. \) For any \(s \in S, \)

\(< x_j\Gamma a\Gamma x_j \geq l(s)+1 \leq x_j\Gamma a\Gamma x_j \subseteq A \) and hence \(x_j\Gamma s\Gamma x_j \subseteq A_4 \) for all \(s \in S. \) If \(A_3 = A_4, \) then \(A_4 \) is a semiprime \(\Gamma \)-ideal and hence \(x_j \in A_4. \) Therefore \((x > x_j \Gamma)^{n-1}x \leq A \) for some natural number \(n. \) Consider the word \(t = x_1\alpha_1x_2\alpha_2x_3\alpha_3x_4\alpha_4 \ldots \ldots \alpha_{n-1}x_j\alpha_nx_{n+1}. \)

Now \(t \in x > x_j \Gamma^{n-1}x \leq A. \) So \(t \in s\Gamma \geq l(s)+1 \leq s \) for some \(s \in S \) with \(l(s) > 1. \)

Thus in \(t, s \) occurs at least two times, which is a contradiction. So \(A_3 \neq A_4. \)
THEOREM 3.3.8: If A is a Γ-ideal of a duo Γ-semigroup S, then \(A_1 = A_2 = A_3 = A_4 \).

Proof: By theorem 3.3.3, \(A \subseteq A_4 \subseteq A_3 \subseteq A_2 \subseteq A_1 \). By theorem 3.1.10, in a duo Γ-semigroup S, a Γ-ideal P is a prime Γ-ideal iff P is a completely prime Γ-ideal.

So \(A_1 = A_3 \). By theorem 3.2.12, in a duo Γ-semigroup S, a Γ-ideal P is a semiprime Γ-ideal iff P is a completely semiprime Γ-ideal. So \(A_4 = A_2 \).

Therefore \(A_1 = A_2 = A_3 = A_4 \).

THEOREM 3.3.9: If A is a Γ-ideal of a duo Γ-semigroup S, then \(\text{rad} \ A = c.\text{rad} \ A \).

Proof: By theorem 3.3.8, \(\text{rad} \ A = c.\text{rad} \ A \).

THEOREM 3.3.10: If A is a Γ-ideal in a duo Γ-semigroup S. Then \(A_2 = \{ x \in S : (x\Gamma)^{n-1} x \subseteq A \text{ for some } n \in \mathbb{N} \} \) is the minimal completely semiprime Γ-ideal of S containing A.

Proof: Clearly \(A \subseteq A_2 \) and hence \(A_2 \) is nonempty subset of S. Let \(x \in A_2 \) and \(s \in S \).

Since \(x \in A_2 \), \((x\Gamma)^{n-1} x \subseteq A \text{ for some } n \in \mathbb{N} \). Now \((x\Gamma s)^{n-1} x\Gamma s \subseteq A \) and \((s\Gamma x)^{n-1} s\Gamma x \subseteq A \) implies \(x\Gamma s, s\Gamma x \in A_2 \). Therefore \(A_2 \) is a Γ-ideal of S containing \(A \). Let \(x \in S \) such that \(x\Gamma x \subseteq A_2 \). Then \((x\Gamma x\Gamma)^{n-1} x \Gamma x \subseteq A \) implies \((x\Gamma)^{2n-1} x \subseteq A \Rightarrow x \in A_2 \). Thus \(A_2 \) is a completely semiprime Γ-ideal of S containing \(A \). Let \(P \) be a completely semi prime Γ-ideal of S containing \(A \). Let \(x \in A_2 \). Then \((x\Gamma)^{n-1} x \subseteq A \text{ for some } n \in \mathbb{N} \). Since \(A \subseteq P \), then \((x\Gamma)^{n-1} x \subseteq P \), for some \(n \in \mathbb{N} \). Since \(P \) is completely semiprime Γ-ideal of S, \((x\Gamma)^{n-1} x \subseteq P \Rightarrow x \in P \). Therefore \(A_2 \subseteq P \) and hence \(A_2 \) is the minimal completely semiprime Γ-ideal of S containing \(A \).

THEOREM 3.3.11: If A is a Γ-ideal in a duo Γ-semigroup S, then \(A_4 = \{ x \in S : (< x >\Gamma)^{n-1} < x > \subseteq A \text{ for some } n \in \mathbb{N} \} \) is the minimal semiprime Γ-ideal of S containing A.

Proof: Clearly \(A \subseteq A_4 \) and hence \(A_4 \) is nonempty subset of S. Let \(x \in A_4 \) and \(s \in S \).

Since \(x \in A_4 \), \((< x >\Gamma)^{n-1} < x > \subseteq A \text{ for some } n \in \mathbb{N} \).

Now \((< x \Gamma s >\Gamma)^{n-1} < x \Gamma s > \subseteq (< x >\Gamma)^{n-1} < x > \subseteq A \) and \((s\Gamma x >\Gamma)^{n-1} s\Gamma x \subseteq (< x >\Gamma)^{n-1} < x > \subseteq A \) implies \(x\Gamma s, s\Gamma x \in A_4 \).

Therefore \(A_4 \) is a Γ-ideal of S containing \(A \). Let \(x \in S \) such that \((< x > \Gamma) < x > \subseteq A_4 \).
Then $<(x >\Gamma <x >\Gamma)^{n-1} <x >\subseteq A$ implies $(<x >\Gamma)^{2n-1} <x >\subseteq A \Rightarrow x \in A_{4}$

Thus A_{4} is semiprime Γ-ideal of S containing A.

Let Q be a semiprime Γ-ideal of S containing A. Let $x \in A_{4}$. Then $(<x >\Gamma)^{n-1} <x >\subseteq A$ for some $n \in \mathbb{N}$. Since $A \subseteq Q$, then $(<x >\Gamma)^{n-1} <x >\subseteq Q$ for some $n \in \mathbb{N}$.

Since Q is a semiprime Γ-ideal of S, $(<x >\Gamma)^{n-1} <x >\subseteq Q \Rightarrow x \in Q$.

Therefore $A_{4} \subseteq Q$ and hence A_{4} is the minimal semiprime Γ-ideal of S containing A.

COROLLARY 3.3.12 : If A is a Γ-ideal of a duo Γ-semigroup S then

1. A_{1} = the intersection of all completely prime Γ-ideals of S containing A,
2. A_{1}' = the intersection of all minimal completely prime Γ-ideals of S containing A,
3. A_{1}'' = the minimal completely semiprime Γ-ideal of S containing A,
4. $A_{2} = \{ x \in S : (x\Gamma)^{n-1} x \subseteq A \text{ for some natural number } n \}$,
5. A_{3} = the intersection of all prime Γ-ideals of S containing A,
6. A_{3}' = the intersection of all minimal prime Γ-ideals of S containing A,
7. A_{3}'' = the minimal semiprime Γ-ideal of S containing A,
8. $A_{4} = \{ x \in S : (<x >\Gamma)^{n-1} <x >\subseteq A \text{ for some natural number } n \}$ are equal.

THEOREM 3.3.13 : If $a \in \sqrt{A}$, then there exist a positive integer n such that $(a\Gamma)^{n-1} a \subseteq A$.

Proof : By theorem 3.3.3, $A_{3} \subseteq A_{2}$ and hence $a \in \sqrt{A} = A_{3} \subseteq A_{2}$.

Therefore $(a\Gamma)^{n-1} a \subseteq A$ for some $n \in \mathbb{N}$.

3.4. ARCHIMEDEAN Γ-SEMIGROUPS

In this section, the terms; Archimedean Γ-semigroup and strongly Archimedean Γ-semigroup are introduced. It is proved that if S is a duo Γ-semigroup, then the conditions (1) S is strongly Archimedean, (2) S is Archimedean, (3) S has no proper completely prime Γ-ideals and (4) S has no proper prime Γ-ideals; are equivalent.

We now introduce the notions of archimedean Γ-semigroup and strongly archimedean Γ-semigroup.

DEFINITION 3.4.1 : A Γ-semigroup S is said to be an archimedean Γ-semigroup provided for any $a,b \in S$, there exists a natural number n such that $(a\Gamma)^{n-1} a \subseteq $.
DEFINITION 3.4.2: A \(\Gamma \)-semigroup \(S \) is said to be a strongly archimedean \(\Gamma \)-semigroup provided for any \(a, b \in S \), there is a natural number \(n \) such that \((a > \Gamma)^{n-1} < a \subseteq < b > \).

We now characterize archimedean \(\Gamma \)-semigroups.

THEOREM 3.4.3: If \(S \) is a duo \(\Gamma \)-semigroup, then \(S \) is strongly archimedean if and only if archimedean.

Proof: Suppose that \(S \) is strongly Archimedean. Then for any \(a, b \in S \), there is a natural number \(n \) such that \((a > \Gamma)^{n-1} < a \subseteq < b > \). Therefore \((a\Gamma)^{n-1}a \subseteq (a > \Gamma)^{n-1} < a \subseteq < b > \) and hence \(S \) is Archimedean.

Conversely suppose that \(S \) is archimedean. Let \(a, b \in S \). Since \(S \) is archimedean, there exists a natural number \(n \) such that \((a > \Gamma)^{n-1} < a \subseteq < b > \subseteq S \Gamma b \Gamma S \). Since \(S \Gamma b \Gamma S \) is a \(\Gamma \)-ideal of a duo \(\Gamma \)-semigroup \(S \), by corollary 3.2.5, \((a\Gamma)^{n-1}a \subseteq S \Gamma b \Gamma S \Rightarrow (a > \Gamma)^{n-1} < a \subseteq S \Gamma b \Gamma S \). Therefore \(S \) is a strongly Archimedean duo \(\Gamma \)-semigroup.

THEOREM 3.4.4: If \(S \) is a duo \(\Gamma \)-semigroup, then \(S \) is archimedean if and only if \(S \) has no proper prime \(\Gamma \)-ideals.

Proof: Suppose that \(S \) is archimedean \(\Gamma \)-semigroup. Let \(P \) be prime \(\Gamma \)-ideal of \(S \). Let \(a, b \in S \). Since \(P \) is \(\Gamma \)-ideal, \(S \Gamma a \Gamma S \subseteq P \). Since \(S \) is archimedean, \((b\Gamma)^{n-1} \subseteq S \Gamma a \Gamma S \) for some natural number \(n \). Thus \((b\Gamma)^{n-1} \subseteq S \Gamma a \Gamma S \subseteq P \). Since \(S \) is a duo \(\Gamma \)-semigroup, by theorem 3.2.10, \(P \) is completely prime. Thus \((b\Gamma)^{n-1}b \subseteq P \Rightarrow b \in P \). Hence \(S = P \). Therefore \(S \) has no proper prime \(\Gamma \)-ideals.

Conversely suppose that \(S \) has no proper prime \(\Gamma \)-ideals. Then for any \(b \in S \), the intersection of all prime \(\Gamma \)-ideals of \(S \) containing \(B = < b > \) is \(S \) itself. Therefore \(B = S \). We have \(B = \{ x \in S : (x > \Gamma)^{n-1} < x \subseteq < b > \text{ for some } n \in N \} = S \).

Therefore for any \(a \in S \), \((a > \Gamma)^{n-1} < a \subseteq < b > \) for some natural number \(n \).

So \((a > \Gamma)^{n-1} < a \subseteq S \Gamma b \Gamma S \). Thus \(S \) is strongly archimedean.

Hence by theorem 3.4.3, \(S \) is archimedean.

COROLLARY 3.4.5: If \(S \) is a duo \(\Gamma \)-semigroup, then the conditions (1) \(S \) is strongly Archimedean, (2) \(S \) is Archimedean, (3) \(S \) has no proper completely prime \(\Gamma \)-ideals and (4) \(S \) has no proper prime \(\Gamma \)-ideals are equivalent.
3.5. SIMPLE Γ-SEMIGROUPS

In this section, the terms; left simple Γ-semigroup, right simple Γ-semigroup, simple Γ-semigroup are introduced. It is proved that (1) a Γ-semigroup S is a left simple Γ-semigroup if and only if $S\Gamma a = S$ for all $a \in S$, (2) a Γ-semigroup S is a right simple Γ-semigroup if and only if $aS = S$ for all $a \in S$, (3) a Γ-semigroup S is a simple Γ-semigroup if and only if $S\Gamma a\Gamma S = S$ for all $a \in S$. It is also proved that if S is a left simple Γ-semigroup or a right simple Γ-semigroup then S is a simple Γ-semigroup. Further it is proved that if S is a duo Γ-semigroup and $a \in S$ then (1) a is regular, (2) a is left regular, (3) a is right regular, (4) a is intra regular and (5) a is semisimple are equivalent.

We now introduce a left simple Γ-semigroup.

DEFINITION 3.5.1: A Γ-semigroup S is said to be a left simple Γ-semigroup if S is its only left Γ-ideal.

We now characterize left simple Γ-semigroups.

THEOREM 3.5.2: A Γ-semigroup S is a left simple Γ-semigroup if and only if $S\Gamma a = S$ for all $a \in S$.

Proof: Suppose that S is a left simple Γ-semigroup and $a \in S$.

Let $t \in S\Gamma a$, $s \in S$, $\gamma \in \Gamma$.

$t \in S\Gamma a \Rightarrow t = s_1\alpha a$ where $s_i \in S$ and $\alpha \in \Gamma$.

Now $s\gamma t = s\gamma(s_1\alpha a) = (s\gamma s_1)\alpha a \in S\Gamma a \Rightarrow S\Gamma a$ is a left Γ-ideal of S.

Since S is a left simple Γ-semigroup, $S\Gamma a = S$.

Therefore $S\Gamma a = S$ for all $a \in S$.

Conversely suppose that $S\Gamma a = S$ for all $a \in S$. Let L be a left Γ-ideal of S.

Let $l \in L$. Then $l \in S$. By assumption $S\Gamma l = S$.

Let $s \in S$. Then $s \in S\Gamma l \Rightarrow s = tal$ for some $t \in S$, $\alpha \in \Gamma$.

$l \in L$, $t \in S$, $a \in \Gamma$ and L is a left Γ-ideal $\Rightarrow tal \in L \Rightarrow s \in L$.

Therefore S $\subseteq L$. Clearly L $\subseteq S$ and hence S = L.

Therefore S is the only left Γ-ideal of S. Hence S is left simple Γ-semigroup.
We now introduce a right simple Γ-semigroup.

DEFINITION 3.5.3: A Γ-semigroup S is said to be a *right simple Γ-semigroup* if S is its only right Γ-ideal.

We now characterize right simple Γ-semigroups.

THEOREM 3.5.4: A Γ-semigroup S is a right simple Γ-semigroup if and only if $a\Gamma S = S$ for all $a \in S$.

Proof: Suppose that S is a right simple Γ-semigroup and $a \in S$. Let $t \in a\Gamma S, s \in S, \gamma \in \Gamma$.
$t \in a\Gamma S \Rightarrow t = a\alpha s_i$ where $s_i \in S$ and $\alpha \in \Gamma$.

Now $t\gamma s = (a\alpha s_i)\gamma s = a\alpha(s_i\gamma s) \in a\Gamma S \Rightarrow a\Gamma S$ is a right Γ-ideal of S.

Since S is a right simple Γ-semigroup, $a\Gamma S = S$.

Therefore $a\Gamma S = S$ for all $a \in S$.

Conversely suppose that $a\Gamma S = S$ for all $a \in S$.

Let R be a right Γ-ideal of a Γ-semigroup S.

Let $r \in R$. Then $r \in S$. By assumption $r\Gamma S = S$.

Let $s \in S$. Then $s \in r\Gamma S \Rightarrow s = rat$ for some $t \in S, \alpha \in \Gamma$.

$r \in R, t \in S, \alpha \in \Gamma$ and R is a right Γ-ideal $\Rightarrow rat \in R \Rightarrow s \in R$.

Therefore $S \subseteq R$. Clearly $R \subseteq S$ and hence $S = R$.

Therefore S is the only right Γ-ideal of S. Hence S is right simple Γ-semigroup.

We now introduce a simple Γ-semigroup.

DEFINITION 3.5.5: A Γ-semigroup S is said to be *simple Γ-semigroup* if S is its only two-sided Γ-ideal.

We now characterize simple Γ-semigroups.

THEOREM 3.5.6: If S is a left simple Γ-semigroup or a right simple Γ-semigroup then S is a simple Γ-semigroup.

Proof: Suppose that S is a left simple Γ-semigroup. Then S is the only left Γ-ideal of S.

If A is a Γ-ideal of S, then A is a left Γ-ideal of S and hence $A = S$.

Therefore S itself is the only Γ-ideal of S and hence S is a simple Γ-semigroup.

Suppose that S is a right simple Γ-semigroup. Then S is the only right Γ-ideal of S.

If A is a Γ-ideal of S, then A is a right Γ-ideal of S and hence $A = S$.

Therefore S itself is the only Γ-ideal of S and hence S is a simple Γ-semigroup.
THEOREM 3.5.7 : A Γ-semigroup S is simple Γ-semigroup if and only if SΓaΓS = S for all a ∈ S.

Proof : Suppose that S is a simple Γ-semigroup and a ∈ S. Let t ∈ SΓaΓS, s ∈ S and γ ∈ Γ.

\(t ∈ SΓaΓS \Rightarrow t = s_1ααβs_2 \) \(s_1, s_2 ∈ S \) and α, β ∈ Γ.

Now 1γs = (s_1ααβs_2)γ s = s_1ααβ(s_1γs) ∈ SΓaΓS

and sγt = sγ(s_1ααβs_2) = (sγs_1)ααβs_2 ∈ SΓaΓS. Therefore SΓaΓS is a Γ-ideal of S.

Since S is a simple Γ-semigroup, S itself is the only Γ-ideal of S and hence SΓaΓS = S.

Conversely suppose that SΓaΓS = S for all a ∈ S. Let I be a Γ-ideal of S. Let a ∈ I. Then a ∈ S. So SΓaΓS = S.

Let s ∈ S. Then s ∈ SΓaΓS ⇒ s = t_1ααβt_2 for some t_1, t_2 ∈ S, α, β ∈ Γ.

Therefore S ⊆ I. Clearly I ⊆ S and hence S = I.

Therefore S is the only Γ-ideal of S. Hence S is a simple Γ-semigroup.

THEOREM 3.5.8 : If S is a duo Γ-semigroup, then the following are equivalent for any element a ∈ S.

1) a is regular.
2) a is left regular.
3) a is right regular.
4) a is intra regular.
5) a is semisimple.

Proof : Since S is duo Γ-semigroup, aΓS^1 = S^1Γa.

We have aΓS^1Γa = aΓaΓS^1 = S^1ΓaΓa = < aΓa > = < a > Γ < a >.

(1) ⇒ (2) : Suppose that a is regular. Then a = aαβγa for some x ∈ S and α, β, γ ∈ Γ.

Therefore a ∈ aΓS^1Γa = aΓaΓS^1 ⇒ a = aγαδγ for some y ∈ S^1, γ, δ ∈ Γ.

Therefore a is left regular.

(2) ⇒ (3) : Suppose that a is left regular. Then a = aαβxy for some x ∈ S and α, β, γ ∈ Γ.

Therefore a ∈ aΓaΓS^1 = S^1ΓaΓa ⇒ a = yγαδa for some y ∈ S^1, γ, δ ∈ Γ.

Therefore a is right regular.

(3) ⇒ (4) : Suppose that a is right regular. Then for some x ∈ S, α, β, γ ∈ Γ; a = xαβγa.

Therefore a ∈ S^1ΓaΓa = < aΓa > ⇒ a = xαβγaγ for some x, y ∈ S^1 and α, β, γ ∈ Γ.

Therefore a is intra regular.
(4) \Rightarrow (5): Suppose that a is intra regular. Then $a = xax\beta a\gamma$ for some $x, y \in S^1$ and $\alpha, \beta, \gamma \in \Gamma$. Therefore $a \in < a > \Gamma < a >$. Therefore a is semisimple.

(5) \Rightarrow (1): Suppose that a is semisimple. Then $a \in < a > \Gamma < a > = a\Gamma S^1 \Gamma a$ $\Rightarrow a \in aax\beta a$ for some $x \in S^1$ and $\alpha, \beta \in \Gamma$. Therefore a is a regular element.

* * * * *