CHAPTER - THREE

Human Resource Management Practices in Public Sector Industries in Yemen

- Introduction.
- Human Resource Management Functions.
- Important of Human Resource Management.
- Reality of Human Resources in the Public Sector in Yemen.
- Human Resources in the Public Sector.
 - Model of the Study in Public Sector
 - Sample of the Study in Public Sector
 - Questionnaires in Public Sector
 - Frequency of distribution for Demographic Variables of the Study in Public Sector
 - Human Resource Management Activities in Public Sector
 - Reliability and Validity
 - Methods of Data Processing and Analysis
CHAPTER - THREE

HUMAN RESOURCE MANAGEMENT PRACTICES IN PUBLIC SECTOR INDUSTRIES IN YEMEN

3.1 Introduction:

Before talking about the practices of human resource management in public and private sector, we must give some information about the concept of human resource management and how it was in past, and also the transition from the old concept of traditional human resources management to the modern concept.

The work in traditional human resources management was only a simple job and has not Importance within the enterprise, where work is limited only to do chores in the executive side, like maintaining the files of workers and that contain for their information, and sometimes that information was stored in the records. Human Resources Management also doing to continuation in the proceedings regarding personnel, such as time control of attendance, Leave and holidays and promotions.

Here we note that the human resources management with this concept did not can be any interest, where it continued this idea at that time, also Human Resources Management have not the qualifications to influence in efficiency and success of the establishment.

It has caused the old concept of human resources management in making their role is limited to do simple chores, and make sure the people that human resources management are the same as personnel management.

During the expansion and industrial development that has occurred recently, it has helped on the emergence of labors organizations and emerging problems and difficulties and conflicts between management and human resources, and the administration has been tried to use some methods to address these problems without the benefit of and had to be the existence of a specialized
department, taking into insuring the human resources requirements and address the problems.

The modern concept of human resource management finds its roots in the early 20th century notion of employee welfare. The large factories that evolved in the United States in the late 19th and early 20th centuries presented managers with major problems of workforce control. The large scale use of immigrant labour combined with the traditional factory organization of sub-contracting to produce workplaces that had essentially become uncontrolled in any centralized sense of the word. Part of the solution to the problem of re-establishing management control on the factory floor was found in the development of Scientific Management or Taylorism as it came to be known after its founder, Frederick Taylor (Taylor, 1911). Although usually thought of today as a prescription for the standardized method of work organization epitomized in the factory assembly line, Taylor actually devised his system in order to establish the leading role of managers in the control of organizations. Taylorism is an early form of human resource management. It embodies the controlling role of managers who need to have full access to information held by workers on the best methods of carrying out their tasks and it advocates a major emphasis on the selection of the right person for the job, proper training to enable workers to gain the skills they require and good rates of pay to offset the boredom of working in a fragmented and high performance work environment. One might be forgiven for thinking that these rules had been devised for modern call centers, an example of a contemporary workplace which embodies one of the oldest forms of management control.

In addition to many of the reasons that led to the emergence of the new concept of Human Resources Management, as:

- Increasing cultural awareness among the workforce.
- Promulgation of laws governing the work.
- The emergence of trade unions and labors organizations.
- The emergence of laws for the organizing the labor relations.
All of these reasons which mentioned or which not mentioned are contributed to the emergence of human resource management by its modern concept, until it became the Human Resources Management of the most important administrative functions in the establishment and it's not less importance than the rest of the other functions.

The new concept of human resource management becomes expanded to include main activities such as:

- Analysis and descriptions of job.
- Human resources planning.
- Attracting of human resources.
- Stimulation of human resources.
- Development and training of human resources. Also the traditional activity of human resources affairs inside the establishments.

There are a few examples of definitions that can contribute to a better understanding of the content of Human Resource Management, without elaborating on all its theoretical and practical meanings and significations:

- The function that facilitates the most efficient use of the personnel with a view to achieving the individual and organization objectives.
- The function that makes it possible for organizations to reach their objectives through acquiring and maintaining efficient workforce.
- The strategic approach to providing, motivating, training and developing an organization’s key-resource.
- The establishment of objectives in relation with the personnel, the accomplishment and control of objectives based on logic of the system.
- It involves all the managerial decisions and practices that affect or directly influence the personnel or human resources in the organization.
- It represents a series of decisions that affect the relation between employees and employers, as well as other parties involved.
• It represents a series of decision regarding the employment relation that influences the employers and organization effectiveness.
• The host of operational (personnel planning, recruitment, maintenance) and energy (the creation of a proper organizational climate) activities that make it possible for the organization to be provided with the necessary Human Resources.
• It makes available the necessary human resources for the organization.

3.2 Human Resource Management Definitions:

Human Resource Management (HRM) is a strategic and coherent approach to the Management of an organization’s most valued assets the people working there who individually and collectively contribute to the achievements of goals. As defined by Storey (1995): ‘Human resource management is a distinctive approach to employment. Management which seeks to obtain competitive advantage through the Strategic deployment of a highly committed and skilled workforce, using an array of cultural, structural and personnel techniques. HRM can be regarded as a ‘set of interrelated policies with an ideological and Philosophical underpinning’ (Storey 1989).

It is concerned with the employment, development and reward of people in organizations and the conduct of relationships between management and the workforce. It involves all line managers and team leaders but human resource (HR) specialists exist to make important contributions to the processes-involved.

3.3 Human Resource Management Functions:

There are multiple functions for human resource management, main functions and secondary functions, and here we will try to give a brief summary for the main functions of the Human Resources Management as follows:
1. Manpower Planning:

Manpower planning enables the human resources management to know manpower requirements in short term or long term and to Preparation of basis of its departmental plans so that it can adjust its manpower requirements to meet the changing priorities.

The Human Resources Management needs manpower planning to show:

- The number of recruits required in a specified timeframe and the availability of talent.
- Early indications of potential recruitment or retention difficulties.
- Surpluses or deficiencies in certain ranks or grades.
- Availability of suitable qualified and experienced successors.

2. Recruitment and Selection of Employees:

The process of recruitment is most important activities of the human resource Management, because it aims to provide by best elements with excellent skills and qualifications. The importance of the recruitment process because it's resource in the prevention or reduction of employment of the person Error (inappropriate), which will cost the organization a lot. In addition to the cost of the organization In terms of salary and allowances, there may be more cost and the implications of the loss resulting from erroneous decisions by the person appointed may reach to the loss of some organizations.

The recruitment process can be defined as a Procedures used by the organization to attract candidates to work and who have the competence and excellence and the ability to contribute to the achievement of the objectives of the organization.

The recruitment process completed according the procedures of establishment and through internal sources and external.

The selection is selecting the best people and most candidates for the job. We must adopt the principle of justice, equality and equal opportunities for all candidates and selection is done on the basis of merit and there must be Accuracy when choosing for recruitment, the right person in the right place.
There are certain steps which followed by the organization in the selection process, and there are also types of tests and number of interviews which completed the selection process.

3. **Training and Development:**
The functionality of training in modern economic organizations, is the most important elements of development adopted by these organizations in building the device has the ability in present and future to meet the pressures and humanitarian challenges, the production technical and management directly related to the individual as a human being on the one hand, and the prime mover of all the factors of production on the other hand, depends on the efficiency of all elements and thus efficiency of organizational performance in the face of all the changes of different directions.

According to all indicators the increasing interest in the function of training because it's related with job performance level of the individual from the position they occupy and productivity or productive efficiency, decline by the individual performance and production efficiency are considered a clear sign of direct intervention by management personnel to take all measures to face this fall so as to produce this intervention raise the level of performance of the individual to the required level, and raise productivity to the level of required standards.

Administrative Development is a tool of modernization and change to keep up to the latest developments of the times and keep up in a manner that supports scientific interest in the work, and provide him with everything new.

4. **Industrial Relations:**
Industrial relations means the internal relations of any institution in which individual employees under the personnel management,

Some of them considered relations related to internal employees and of being members of groups such as trade unions and labor unions, and under the administration of labor relations.
Some of them considered relations Industrial Affairs is a single word to calling the technical staff responsible for the organization of relations between institutions and all the staff and the community in which they operate, and then include all the previous images.

Finally, there tends to view the definition of industrial relations as collective labor relations

All the relations which are arise between management and workers and between management and unions which they belong as well as negotiations between representatives of workers and representatives of employers.

To regulate the relationship with trade unions and labors of organizations addressing the issues and labor disputes, complaints and discipline and dismissal from the service.

5. Employee Evaluation:
Performance evaluation can be defined as the process of measuring the functional behavior of employees in the workplace, and their characteristics relevant to their positions, and results of their work regularly and periodically, and by a person or group of persons, who are familiar with appropriate performance.

The evaluation process is not aim, but rather a means and aims eventually to motivate individuals, and help them to modify their behavior in a positive way and push them to develop their performance and then raise the productive efficiency of the organization.

6. Employee Motivation:

Featuring the leading companies which achieve success consecutive year after year they insure for their employees a good environment and stimulating of work and pushes them forward that always.

Known stimulus that motive which move us, what we do, where the people find a greater incentive to work when they feel what they do in the end hurt
their interests. Manager will know that he cannot motivate others, but can only provide the incentive that pushes them to work.
This incentive is always a dual nature, it comes from inside and is influenced by external factors that cannot influence the stimulation without the presence of this internal motivation.
A variety of incentives offered by management to staff as well as vary the quantity, timing, and methods of management, we can say that as much as there is the motivation and the needs of individuals and groups, as there are various incentives to meet these needs and motivations. The stimulation it has multiple images, there is direct and indirect, and is evident through the provision of management to a suitable working environment enables the employee to make the highest level in the work and achievement.

7. Development of systems, services for workers:
Providing and insure to health care and social for workers In addition to giving workers certain advantages as salary and insurance of the disease, and disability, and unemployment, may extend the organization to provide some services for workers such as housing, transportation and some financial services as Subsidies and interest-free loans and other services. Also this function interested to take all the actions which Would preserve the integrity and safety and health of workers, Such as improving and developing the work environment, whether financial or Social, or psychological health.

3. 4 Importance of Human Resource Management:
Steven Stralser “says it is important to be able to recruit good employees, but the raising their abilities and help them to reach their maximum potential is not less important, but may be more important”. The training and staff development is a fundamental aspect in all companies today.
The importance of human resource in organization because of human is the most important element of the production process which must be the availability of good talent capable of outstanding performance and contribution.

The importance of human resources in the organization comes from importance of human element, that the most important element for the production process which must be the availability of good talent capable of outstanding performance and contribution.

We can say that the expansion of production is not the expanding the horizontal only (increase the number of staff and high-tech machinery and equipment), but the vertical expansion of production is complementary to the horizontal expansion by raising the level of production efficiency through the provision of human resources restless and viable operations composition, qualification and training.

There is no doubt in the importance of human resource management comes from the role that played and through its functions. And must are certain that all departments of the institution directly affected by activity of management of human resources and whenever the performance of human resources management more efficient and professionalism has had a direct impact on the performance of individuals for the various departments.
The basic features of highly professional human resource management

Figure No. 1

a) **Speed:**

It’s necessary in implementation of special services for personnel of organization.

Speed in interaction with other events and various events which face workers in organization.

b) **Precision:**

It’s required in all the data of the activities of Human Resources. It is the accuracy in the implementation of safety procedures applicable legal.
Accuracy is necessary to integrity of documents relating to the activities of Human Resources.

c) Secretariat and confidentiality:

It’s required for documents of employees in the organization. Confidentiality for the organization documents which are come in or come out.

d) Flexibility:

It’s necessary in the planning and implementation of policies and procedures of human resource especially in the event of modifications and various changes in domestic laws or foreign in institution. It is also for dealing with the special humanitarian cases.

e) Simplicity in procedure:

It’s required in the implementation of transactions for employees in the organization, which means good coordination between the team members work of the Department. (Leaves - Rewards - Registration and implementation of training - access to medical services and other services which provided by the institution)

f) Positive and interaction:

We need it for applications and the different needs of employees in organization with their status level of management. It is also for positive interaction with the various events which face workers in the organization.

g) Collective and integration:

The spirit of cooperative teamwork, especially that of human resources management need to format until the completion of various transactions quickly and efficiently. It’s necessary for recycling career and knowledge, and understanding of each employee for the work of his colleagues.
h) The continuing evolution:

It’s required to know the level of services that are offered to employees. We use it in motivation policies to cope with growing continuing needs and desires of employees in the organization. It’s necessary for systems and tools, and methods which use in human resources management.

3. 5 Reality of Human Resources in the Public Sector in Yemen:

Has caused economic and social changes since 1980, which is unprecedented in Yemen during the past two decades considerable volatility in the demographic situation and the development of the labor market. There is no doubt that the demand side of labor markets of Yemen and its regional importance, has affected by the experience of employment in Yemen during the eighties and Nineties early the overall growth of the economy Gulf.

3. 5. 1 Reality of the population:

Statistics estimates that the number of residents in Yemen for the year (2009) has reached (22,492,035) people, a male represented (51%) and females (49%) The concentration of population in the province of Taiz the first rate (12.1%), followed by AL-Hodeidah Governorate (11%) and Ibb Governorate and by (10.8%), and Sana'a, by (9%) and Hajjah(7.5%) and distributed the rest to the rest of the governorates of the Republic.

3. 5. 2 The Manpower in Yemen:

Estimated size of the workforce in Yemen (2009) is (5,434,426) worker, He notes the high volume of the Yemeni labor force in recent years as a result of migration return of Yemenis working abroad, and thus lower labor migration to work in Yemen Abroad, and because of the increased number of new entrants to the labor market as a result of high annual growth rate Population.
3. 6 Human Resources in the Public Sector:

The number of employees in the public sector (545,817) employee, all distributors Departments and institutions of the public sector, and occupied the Ministry of Education and education ranked first, with the number of employees (281,777) employee in all categories and are Represented (51.6%) of the staff of the public sector according to figures from the Civil Service Bureau. Followed by that the Ministry of Health as the total number of employees (53,963) employee are represented (9.9%), and number of employees in public administration (44,752) employee represented (8.2%), while the total number of personnel departments and other institutions (165,325) and are accounted for (30.3%) from the total of public sector.

3. 6. 1 In terms of Gender:

Statistics indicate that the distribution of the staff of the public sector by gender indicates that the number of males is higher than the number of females, numbered (451,217) employee are accounted for (82.7%) while the total number of females (94,592) per employee accounted for (17.3%).

3. 6. 2 In terms of Industry:

Statistics indicate that the distribution of employees in public sector in various branches of industry productivity is low percentage, where the number of employees in the Mining and Drilling (3,953) rate (0.7%), while the number increased in the manufacturing sector to reach (20,080) rate (3.7%), while electricity and water had reached to numbers (23,873) rate(4.4%).

3. 7 Human Resource Management practices in Public Sector Industries in Yemen:

To know the reality of human resources management in the public and private sector industries in Yemen, and whether the activity is done according the principles and scientific criteria derived from the plans of a modern line with
the development taking place in the world and meet the needs of enterprises and individuals according to the vision of human resources management and in accordance with the duties and functions.

All this makes it imperative to examine the nature of the practices of human resources management in public and private sector. And here we will single out this chapter to give an analytical presentation for the practices of human resources management in the public sector industrial.

3. 7. 1 Model of the Study in Public Sector:

We want this model to explain the paths that will follow it to see human resource management practices in the public sector. Where it be to identify the activities of Human Resource Management in the Public Sector, according to what she doing, according to:

- The statutory powers which awarded to the Human Resource Management in the Public Sector.
- Application for the human resource management functions in the public sector in accordance with the administrative structures in the establishment.
- Instructive level of Human Resource Management Employees in Public Sector.
3. 7. 2 Sample of the Study in Public Sector:

Selected sample of the study in public sector as follows:

A. Ministry of Civil Service and Insurances
B. Public Institution for Telecommunication
C. Public Institution for Print of Textbook
D. Amran Cement Factory
E. Yemen LNG Company Ltd.
From these institutions we selected the Samples as follows:

- The study included all staff of the Human Resource Management which was chosen in the public sector.
- Added random samples from within the selected establishments to find out their views about Human resource management practices.

3. 7. 3 Questionnaires in Public Sector:

<table>
<thead>
<tr>
<th>Type of questionnaires</th>
<th>Number</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Questionnaires distributed</td>
<td>290</td>
<td>100%</td>
</tr>
<tr>
<td>Questionnaires did not return</td>
<td>92</td>
<td>31.7%</td>
</tr>
<tr>
<td>Questionnaires returned</td>
<td>198</td>
<td>68.3%</td>
</tr>
<tr>
<td>Questionnaires not properly filled in</td>
<td>10</td>
<td>3.5%</td>
</tr>
<tr>
<td>Analyzed Questionnaires</td>
<td>188</td>
<td>64.8%</td>
</tr>
</tbody>
</table>

Table No. 1

Was chosen the questionnaire as a tool for collecting the required information for the study, and designed questionnaire to covering all the variables which the researcher wants to know the nature of human resource management practices in the public sector. Have been identified the target samples which selected in establishments of public sector as follows:

- Covered human resources management employees in each establishment.
- Added some random samples from each establishment.

After the questionnaire is distributed in selected establishments of public sector, where the distribution of (290), and the percentage of questionnaires returned (68.3%) and the percentage of questionnaires did not return (31.7%).
After that Been reviewed the questionnaires to find out the total of valid questionnaires for analysis, which rate (64.8%), were excluded from that the questionnaires are not valid for analysis and have reached his percentage (3.5%).

3. 7. 4 Frequency of distribution for demographic variables of the Study in Public Sector:

After collecting the questionnaires which were distributed to the sample, were unloaded and analysis of questionnaires, the study showed a range of demographic characteristics of the study sample as follows:

3. 7. 4. 1 Gender of sample in Public Sector:

The percentage of males sample which had taken from the public sector (75.5%), and the percentage of females (24.5%).

<table>
<thead>
<tr>
<th>Gender of sample in Public Sector</th>
<th>Frequency</th>
<th>Percent</th>
<th>Valid Percent</th>
<th>Cumulative Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>142</td>
<td>75.5</td>
<td>75.5</td>
<td>75.5</td>
</tr>
<tr>
<td>Female</td>
<td>46</td>
<td>24.5</td>
<td>24.5</td>
<td>100.0</td>
</tr>
<tr>
<td>Total</td>
<td>188</td>
<td>100.0</td>
<td>100.0</td>
<td></td>
</tr>
</tbody>
</table>

Table No. 2
3. 7. 4. 2 The study sample according to qualifications:

Qualification of Employees in Public Sector

<table>
<thead>
<tr>
<th>Qualification</th>
<th>Frequency</th>
<th>Percent</th>
<th>Valid Percent</th>
<th>Cumulative Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Other’s</td>
<td>28</td>
<td>14.9</td>
<td>14.9</td>
<td>14.9</td>
</tr>
<tr>
<td>XII Standard</td>
<td>96</td>
<td>51.1</td>
<td>51.1</td>
<td>66.0</td>
</tr>
<tr>
<td>Bachelor</td>
<td>57</td>
<td>30.3</td>
<td>30.3</td>
<td>96.3</td>
</tr>
<tr>
<td>Master</td>
<td>6</td>
<td>3.2</td>
<td>3.2</td>
<td>99.5</td>
</tr>
<tr>
<td>Ph. D</td>
<td>1</td>
<td>0.5</td>
<td>0.5</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Total 188 100.0 100.0

Table No. 3
Table No.3 reveals that the highest percentage of the study sample was holding qualification XII Standard, rate (41.4%) the number was (96) employees, which is significant and is a problem in the science level of employees in Public sector, and rate (30.3%) who have a Bachelor degree, the number was (57) employees, while the proportion of employees who have the qualification Master was (3.2%) reached a number (6) employees, while the proportion of employees who have the qualification Ph.D was (0.5%) which was less rate in Public Sector

Qualification of Employees in Public Sector

Figure No. 4
3. 7. 4. 3 The study sample according to Experience:

Experience of Employees in Public Sector

<table>
<thead>
<tr>
<th>Experience Range</th>
<th>Frequency</th>
<th>Percent</th>
<th>Valid Percent</th>
<th>Cumulative Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 Years and less</td>
<td>17</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
</tr>
<tr>
<td>6 to 10 Years</td>
<td>15</td>
<td>8.0</td>
<td>8.0</td>
<td>17.0</td>
</tr>
<tr>
<td>11 to 15 Years</td>
<td>52</td>
<td>27.7</td>
<td>27.7</td>
<td>44.7</td>
</tr>
<tr>
<td>16 to 20 Years</td>
<td>33</td>
<td>17.6</td>
<td>17.6</td>
<td>62.2</td>
</tr>
<tr>
<td>21 Years and over</td>
<td>71</td>
<td>37.8</td>
<td>37.8</td>
<td>100.0</td>
</tr>
<tr>
<td>Total</td>
<td>188</td>
<td>100.0</td>
<td>100.0</td>
<td></td>
</tr>
</tbody>
</table>

Table No. 4

Table No.4 shows the highest percentage of the Experience of Employees is they having experience more than 20 years, rate (37.8%) the number was (71) employees, after that comes the rate of employees having experience from 11 to 15 years (27.7%) the number was (52) employees, and the rate of employees having experience from 16 to 20 years is (17.6%) the number was (33), and the rate of employees having experience less than 5 years is (9.0%) the number was (17), the less rate in Public sector of Employees Experience is (8.0%) for employees having experience from 6 to 10 years, the number was (15) employees.
3. 7. 5 Human Resource Management Activities in Public Sector:

Here will be the follow-up of activity of the Human Resource Management and study of all the actions which result from that activity, in terms of safety of procedures, obstacles, facilities, disadvantages, benefits, deficiencies, demands, rights, duties, permitted, forbidden.

All these items will be studied through specific paths and according to specific vocabulary, and have been identified the tracks are as follows:-

- Legislations and Laws
- Human Resource Management functions
- Instructive level of Employees

3. 7. 6 Reliability and Validity:

A. Validity:

Is the test which measures what made to be measured it. The test we have set is capable of measuring the side which we mean.

B. Reliability test:

Is the test which applied on an individual or group of individuals several times and given the same output or estimates?

Methods for determining the reliability coefficient test:

- Test - Retest.
- Equivalent forms.
- Spilt-halves.

Spilt-halves

We used this method in the search, where the test was divided into two half in paragraphs, and then the two halves were used in the calculation of degrees of correlation.
Reliability Statistics

<table>
<thead>
<tr>
<th></th>
<th>Part 1</th>
<th>Value</th>
<th>N of Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cronbach's Alpha</td>
<td>Part 1</td>
<td>.981</td>
<td>24(a)</td>
</tr>
<tr>
<td></td>
<td>Part 2</td>
<td>.991</td>
<td>24(b)</td>
</tr>
<tr>
<td></td>
<td>Total N of Items</td>
<td>48</td>
<td></td>
</tr>
<tr>
<td>Correlation Between Forms</td>
<td></td>
<td>.991</td>
<td></td>
</tr>
<tr>
<td>Spearman-Brown</td>
<td>Equal Length</td>
<td>.995</td>
<td></td>
</tr>
<tr>
<td>Coefficient</td>
<td>Unequal Length</td>
<td>.995</td>
<td></td>
</tr>
<tr>
<td>Guttman Split-Half Coefficient</td>
<td></td>
<td>.994</td>
<td></td>
</tr>
</tbody>
</table>

Table No. 5

a The items are: Gender of Research Samples, Qualification of employees, Experience of Employees, Legislations and laws, Lack of clarity of organizational goals, Limited Powers, Attention with the Human element, Thee Work procedures in the organization, Lack of organizational structures in the institution, The description system in the institution, The internal and external sources of human resources, The scientific plans, The absence of self-insurance in institution, Institution employees in human resource management, Recruitment procedures, Policy of polarization and selection for new staff, Safety of recruitment procedures, The appointment in permanent function, Training programs to increase the capacity, Weaknesses in the preparation of the staff, Training sessions, New training programs, The quality of training programs, New strategies.

b The items are: The coordination between the educational institutions and organizations, The functional drop-out from organization, The relation between the various management levels, The employee constancy in work, The relation between the results of evaluation and promotion system, The confidence in management skills, The qualitative achievement in functionality, The system of follow-up and evaluation, Time of the assessment, Adherence to the employee and appreciation of his work, The decision by senior management, Rights of workers, The coordination in the policies and plans, Salaries and Wages, There is no dedication in the work of staff, The complacency in the work, The issues of workers, The social activities and recreational, The health care system, The burden of new appointments and training programs, Impact of the training on the job, The pressures of different work, The employee contentment, The relationship between employee study and field of work.

Where the coefficient of reliability = 0.994

To find the coefficient of validity, we follow the equation the following:

\[
\text{Coefficient of validity} = \sqrt{\text{Coefficient of reliability}}
\]

\[= 0.996\]

This confirms the credibility of the test, and we note the increase in the value of the reliability coefficient gives increase the value of validity of scale.

Method of variance, using equation Cronbach alpha

Equation depends on the variances of test questions, and requires that the test items measure only one attribute.
Where the coefficient of reliability = 0.993

<table>
<thead>
<tr>
<th>Test</th>
<th>Degree</th>
<th>Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) Coefficient of validity</td>
<td>0.996</td>
<td>High</td>
</tr>
<tr>
<td>(2) Guttman Split-Half Coefficient</td>
<td>0.994</td>
<td>High</td>
</tr>
<tr>
<td>(3) Cronbach's Alpha</td>
<td>0.993</td>
<td>High</td>
</tr>
</tbody>
</table>

We can deduce from above table of proper study tool which is met the requirements of psychometric test and meet the objectives of the study.

3. 7. 7 Methods of Data processing and Analysis:

Researcher analyzed the data which obtained from the sample of study statistically where used the program SPSS as the following:

a) Coding of variables of the study in a clear manner, so there is no mixing in the given semantic.

b) Entry of data forms for the questionnaire which already adjusted to the computer.

c) To achieve the objectives of the study and testing of hypotheses.

Multiple Regression and Correlation

I selected this type for the following reasons:

- Multitude of independent variables for dependent variable is helping to get accurate correlation and clear.
• The second reason for the use of multiple regression line is the dependent variable often depends on more than one independent variable.

In this method we will depend on the following equation:

\[Y = a + X_1b + X_2c + X_3d + X_4e + u \]

Where:

- \(Y \) = Dependent Variable
- \(X_1, X_2, X_3, X_4 \) = Independents Variables
- \(a \) = Coefficient of the Intersection or Constant Bound.
- \(b, c, d, e \) = Coefficients representing multiple linear regression equation.
- \(u \) = Represents the Standard Error or (Random Error of the Estimated Model).

The multiple regression line method under program SPSS that used in analysis is called also "stepwise".

3. 7. 7. 1 Analysis of legislations and laws:

Researcher wants through this variable determine the impact of legislations and Laws which governs human resource management Practices in the public sector, whether positive or negative.

Human resource management cannot function normally with a lack of legislation and laws in terms of:

- The general laws for establishing of institutions.
- The granted powers.
- Legal regulations in the organizations.
We will know the true of reality the legal environment which surrounding the human resource management in the public sector through the study of the following variables:

Variables Entered/Removed(a)

<table>
<thead>
<tr>
<th>Model</th>
<th>Variables Entered</th>
<th>Variables Removed</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>The Work procedures in the organization</td>
<td></td>
<td>Stepwise (Criteria: Probability-of-F-to-enter <= .050, Probability-of-F-to-remove >= .100).</td>
</tr>
<tr>
<td>2</td>
<td>Legislations and laws</td>
<td></td>
<td>Stepwise (Criteria: Probability-of-F-to-enter <= .050, Probability-of-F-to-remove >= .100).</td>
</tr>
<tr>
<td>3</td>
<td>Lack of clarity of organizational goals</td>
<td></td>
<td>Stepwise (Criteria: Probability-of-F-to-enter <= .050, Probability-of-F-to-remove >= .100).</td>
</tr>
</tbody>
</table>

a Dependent Variable: Limited Powers

Table No. 8

According to the method of Stepwise, is entered the variables that have been identified one by one; any of these variables are subject to exclusion in subsequent steps if is proven that does not have any significant impact with other variables.

Variable (The Work procedures in the organization) is the first variable that entered on the form, Variable (The Work procedures in the organization) is the first variable that entered on the form, because it has big correlation coefficient simple with the dependent variable (limited powers), and therefore the largest value of the statistic t from the following table (Coefficients), we note the value of (p-value) associated with the statistical t, is 0.000 is less than 0.05(probability of - F – to enter ≤ 0.05), Second comes the variable (Legislations and laws), after that comes the variable (Lack of clarity of organizational goals), We note the variable (Attention with the Human element) excluded (there is no significant presence with other variables).
1 Model Summary:

Table No. 9 shows the values of three correlation coefficients as follow:

Simple Correlation Coefficient $R = (0.97)$

The Square Coefficient $R^2 = (0.94)$

Adjusted Square Coefficient $R^2_{adj} = (0.94)$

Correlation is strong between independent variables and dependent variable.

That means independent variables (X_1, X_2, X_4) able to be interpreted 94% from the changes in the dependent variable (Y), the remainder 6% because of other factors.

2 Multiple regression analysis of the dependent variable (Y):

Analysis of the correlation has been made between the limited powers of the Human Resource Management in the Public Sector and the Independents variables X_1, X_2 and X_4
The following table shows there models for the entry of independents variables, to measure the correlation with the dependent variable.

<table>
<thead>
<tr>
<th>Model</th>
<th>Unstandardized Coefficients</th>
<th>Standardized Coefficients</th>
<th>t</th>
<th>Sig.</th>
<th>95% Confidence Interval for B</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B</td>
<td>Std. Error</td>
<td>Beta</td>
<td></td>
<td>Lower Bound</td>
</tr>
<tr>
<td>1</td>
<td>(Constant)</td>
<td>-.056</td>
<td>.065</td>
<td>-.861</td>
<td>.390</td>
</tr>
<tr>
<td></td>
<td>The Work procedures in the organization</td>
<td>1.089</td>
<td>.026</td>
<td>.950</td>
<td>41.534</td>
</tr>
<tr>
<td>2</td>
<td>(Constant)</td>
<td>-.128</td>
<td>.053</td>
<td>-2.397</td>
<td>.018</td>
</tr>
<tr>
<td></td>
<td>The Work procedures in the organization</td>
<td>.690</td>
<td>.045</td>
<td>.601</td>
<td>15.228</td>
</tr>
<tr>
<td></td>
<td>Legislations and laws</td>
<td>.361</td>
<td>.036</td>
<td>.395</td>
<td>9.992</td>
</tr>
<tr>
<td>3</td>
<td>(Constant)</td>
<td>-.134</td>
<td>.053</td>
<td>-2.553</td>
<td>.011</td>
</tr>
<tr>
<td></td>
<td>The Work procedures in the organization</td>
<td>.581</td>
<td>.062</td>
<td>.507</td>
<td>9.445</td>
</tr>
<tr>
<td></td>
<td>Legislations and laws</td>
<td>.341</td>
<td>.036</td>
<td>.373</td>
<td>9.353</td>
</tr>
<tr>
<td></td>
<td>Lack of clarity of organizational goals</td>
<td>.146</td>
<td>.057</td>
<td>.123</td>
<td>2.555</td>
</tr>
</tbody>
</table>

Table No. 10

Model 1 shows the variable X_1 (The Work procedures in the organization)
The first variable entering to the model because it has the largest correlation coefficient with dependent variable, where the correlation coefficient (1.089) and the value of statistical T (41.534) and we note the value of (p-value) = 0.000 is less than 0.05(probability –of-F-to-enter ≤ 0.05). This allows the independent variable X_1 to entering model.

Therefore, the equation of the first model as follows:

$$Y = -0.056 + 1.089X_1$$

Model 2 reveals that the variable that has the highest partial correlation coefficient with the dependent variable, and constant of X_1 that variable is X_2 (Legislations and laws) where the correlation coefficient (0.361), and the value of (p-value) 0.000 less than 0.05 (probability –of-F-to-enter ≤ 0.05).

This allows the independent variable X_2 to entering model. Therefore, the equation of the second model as follows: $$Y = -0.128 + 0.690X_1 + 0.361X_2$$
Model 3 presents the variable that has the highest partial correlation coefficient with the dependent variable, and constant of X_1 and X_2 that variable is X_4 (Lack of clarity of organizational goals) where the correlation coefficient (0.146), and the value of (p-value) 0.011 less than 0.05 (probability -of-F-to-enter ≤ 0.05). This allows the independent variable X_4 to entering model.

Therefore, the equation of the third model as follows:

$$Y = -0.134 + 0.581X_1 + 0.341X_2 + 0.146X_4$$

$$Y = -0.025$$

The third model is the final model and represents the best regression model and does not include the independent variable X_3 where did not show significant of variable that has the highest correlation with the dependent variable (probability -of-F-to-enter ≤ 0.05) therefore been excluded from the model.

<table>
<thead>
<tr>
<th>Excluded Variables \ Model</th>
<th>Beta In</th>
<th>t</th>
<th>Sig.</th>
<th>Partial Correlation</th>
<th>Collinearity Statistics</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Legislations and law</td>
<td>.395<sup>a</sup></td>
<td>9.992</td>
<td>.000</td>
<td>.592</td>
</tr>
<tr>
<td></td>
<td>Lack of clarity of organizational goals</td>
<td>.221<sup>a</sup></td>
<td>3.861</td>
<td>.000</td>
<td>.273</td>
</tr>
<tr>
<td></td>
<td>Attention with the Human element</td>
<td>.383<sup>a</sup></td>
<td>8.862</td>
<td>.000</td>
<td>.546</td>
</tr>
<tr>
<td>2</td>
<td>Lack of clarity of organizational goals</td>
<td>.123<sup>b</sup></td>
<td>2.555</td>
<td>.011</td>
<td>.185</td>
</tr>
<tr>
<td></td>
<td>Attention with the Human element</td>
<td>.086<sup>b</sup></td>
<td>1.011</td>
<td>.313</td>
<td>.074</td>
</tr>
<tr>
<td>3</td>
<td>Attention with the Human element</td>
<td>.046<sup>c</sup></td>
<td>.532</td>
<td>.595</td>
<td>.039</td>
</tr>
</tbody>
</table>

a. Predictors in the Model: (Constant), The Work procedures in the organization

b. Predictors in the Model: (Constant), The Work procedures in the organization, Legislations laws

c. Predictors in the Model: (Constant), The Work procedures in the organization, Legislations laws, Lack of clarity of organizational goals

d. Dependent Variable: Limited Powers
3 Test of the first hypothesis:

Null hypothesis (μ_0): Regression not significant (not different from zero)

Alternative hypothesis (μ_1): Regression significant (different from zero)

ANOVA table reveals that the value of sig = 0.000 less than 0.05

Therefore, μ_0 is rejected.

That means there is a positive correlation and has statistically significant between the powers of Human Resource Management In the public sector and current legislations & laws.

The positive improved legislations and laws which are relating to Human Resource Management is reflected positive on the performance of Human Resource Management in the Public Sector. If the Human Resource Management Department found the good legal environment to keep up with all the global changes in the labor market, it will be able to accomplish its tasks and achieve the objectives.
This can be explained the needs of human resource management to reconsider some domestic laws and demand for improve some the legislations which they relate.

All of this supports and confirms the correctness of the hypothesis that the current legislations and laws which governs the Public Sector Industries in Yemen are not suitable for Human Resource Management Practices.

Histogram

Dependent Variable: Limited Powers

Histogram depicts an overall picture of the data is distributed according to the normal distribution.
3.7.7.2 Analysis of Manpower Planning:

Variables Entered/Removed(a)

<table>
<thead>
<tr>
<th>Model</th>
<th>Variables Entered</th>
<th>Variables Removed</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>The scientific plans</td>
<td>.</td>
<td>Stepwise (Criteria: Probability-of-F-to-enter <= .050, Probability-of-F-to-remove >= .100).</td>
</tr>
<tr>
<td>3</td>
<td>The internal and external sources of human resources</td>
<td>.</td>
<td>Stepwise (Criteria: Probability-of-F-to-enter <= .050, Probability-of-F-to-remove >= .100).</td>
</tr>
</tbody>
</table>

Note: Dependent Variable: Lack of organizational structures in the institution

Table No. 13 shows the entree of variables to the model. Variable (The scientific plans) is the first variable that entered on the model, Variable (The scientific plans) is the first variable that entered on the model, because it has big correlation coefficient simple with the dependent variable (Lack of organizational structures in the institution), and therefore the largest value of the statistic t from the following table (Coefficients), we note the value of (p-value) associated with the statistical t, is 0.000 is less than 0.05(probability of -F – to enter ≤ 0.05), Second comes the variable (The absence of self-insurance in institution),after that comes the variable (The internal and external sources of human resources). We note the variable(the description system in the institution) excluded (there is no significant presence with other variables).

1 Model Summary:
Table No. 14

Table No. 14 shows the values of the three correlation coefficients, as follow:

Simple Correlation Coefficient $R = (95\%)$

The Square Coefficient $R^2 = (91\%)$

Finally, Adjusted Square Coefficient $R^2- = (90\%)$

Which means that the independent variables (X_1, X_2, X_4), was able

Be interpreted (90%) from changes in the Dependent Variable (Y), the remainder (10%) due to other factors.

2 Multiple regression analysis of the dependent variable (Y):

Analysis of the correlation has been made between the Lack of organizational structures in the institution in the public sector and the Independents variables X_3, X_4 and X_2

The following table shows three models for the entry of independents variables, to measure the correlation with the dependent variable.

<table>
<thead>
<tr>
<th>Model</th>
<th>R</th>
<th>R Square</th>
<th>Adjusted R Square</th>
<th>Std. Error of the Estimate</th>
<th>R Square Change</th>
<th>F Change</th>
<th>df1</th>
<th>df2</th>
<th>Sig. F Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.935a</td>
<td>.874</td>
<td>.874</td>
<td>.408</td>
<td>.874</td>
<td>1294.851</td>
<td>1</td>
<td>186</td>
<td>.000</td>
</tr>
<tr>
<td>2</td>
<td>.953b</td>
<td>.908</td>
<td>.907</td>
<td>.350</td>
<td>.034</td>
<td>68.270</td>
<td>1</td>
<td>185</td>
<td>.000</td>
</tr>
<tr>
<td>3</td>
<td>.954c</td>
<td>.910</td>
<td>.909</td>
<td>.347</td>
<td>.002</td>
<td>4.160</td>
<td>1</td>
<td>184</td>
<td>.043</td>
</tr>
</tbody>
</table>

a. Predictors: (Constant), The scientific plans
b. Predictors: (Constant), The scientific plans, The absence of self-insurance in institution
c. Predictors: (Constant), The scientific plans, The absence of self-insurance in institution, The internal and external sources of human resources
d. Dependent Variable: Lack of organizational structures in the institution
Table No. 15

Model 1 Shows the variable X_3 (The Scientific plans) The first variable entering to the model because it has the largest correlation coefficient with dependent variable, where the correlation coefficient (1.050) and the value of statistical T (35.984) and we note the value of (p-value) = 0.000 is less than 0.05(probability –of-F-to-enter ≤ 0.05) This allows the independent variable X_3 to entering model. Therefore, the equation of the first model as follows:

$$Y = 0.100 + 1.050X_3$$

Model 2 reveals that the entrée of the variable that has the highest partial correlation coefficient with the dependent variable, and constant of X_3 that variable is X_4 (The absence of self-insurance in institution) where the correlation coefficient (0.459), and the value of (p-value) 0.000 less than 0.05 (probability –of-F-to-enter ≤ 0.05). This allows the independent variable X_4 to entering model.

Therefore, the equation of the second model as follows:

$$Y = -0.091 + 0.586X_3 + 0.459X_4$$
Model 3 presents the variable that has the highest partial correlation coefficient with the dependent variable, and constant of X_3 and X_4 that variable is X_2 (The internal and external sources of human resources) where the correlation coefficient (0.175) and the value of (p-value) 0.043 less than 0.05 (probability –of-F-to-enter ≤ 0.05). This allows the independent variable X_2 to entering model. Therefore, the equation of the third model as follows:

$$Y = 0.017 + 0.519X_3 + 0.410X_4 + 0.175X_2$$

$$Y = 0.16$$

The third model is the final model and represents the best regression model and does not include the independent variable X_1 where did not show significant of variable that has the highest correlation with the dependent variable (probability –of-F-to-enter ≤ 0.05) therefore been excluded from the model.

<table>
<thead>
<tr>
<th>Excluded Variablesd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>3</td>
</tr>
</tbody>
</table>

a. Predictors in the Model: (Constant), The scientific plans
b. Predictors in the Model: (Constant), The scientific plans, The absence of self-insurance in institution
c. Predictors in the Model: (Constant), The scientific plans, The absence of self-insurance in institution, The internal and external sources of human resources
d. Dependent Variable: Lack of organizational structures in the institution

| Table No. 16 |

3 Test of the second hypothesis:
Null hypothesis (μ_0): Regression not significant (not different from zero)

Alternative hypothesis (μ_1): Regression significant (different from zero)

Table No. 17

ANOVA table reveals that the value of sig = 0.000 less than 0.05

Therefore, μ_0 is rejected.

That means there is a positive correlation and has statistically significant between Manpower planning in the public sector and performance of Human Resource Management.

Manpower planning means knowledge of the essential needs of the organization and determining the sources; these sources may be internal, which incumbent on the Human Resource Management to prepare its workforce to face the required work of them.

When the sources become external should the Human Resource Management determine the qualities and qualifications of new employees.

All this confirms the existence of a positive relationship between workforce planning and management performance.

3.7.7.3 Analysis of Recruitment and Selection of Employees:
Variables Entered/Removed (a)

<table>
<thead>
<tr>
<th>Model</th>
<th>Variables Entered</th>
<th>Variables Removed</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Safety of recruitment procedures</td>
<td>-</td>
<td>Stepwise (Criteria: Probability-of-F-to-enter <= .050, Probability-of-F-to-remove >= .100).</td>
</tr>
<tr>
<td>2</td>
<td>The appointment in permanent function</td>
<td>-</td>
<td>Stepwise (Criteria: Probability-of-F-to-enter <= .050, Probability-of-F-to-remove >= .100).</td>
</tr>
</tbody>
</table>

Table No. 18

Table No. 18 shows the entree of variables to the model, Variable (Safety of recruitment procedures) is the first variable that entered on the model, Variable (Safety of recruitment procedures) is the first variable that entered on the model, because it has big correlation coefficient simple with the dependent variable (Recruitment procedures), and therefore the largest value of the statistic t from the following table (Coefficients), we note the value of (p-value) associated with the statistical t, is 0.000 is less than 0.05(probability of F – to enter ≤ 0.05), Second comes the variable (The appointment in permanent function), We note the variables(Institutions Employees in HRM) and (Policy of polarization and selection for new staff) excluded (there is no significant presence with other variables).

1 Model Summary:

<table>
<thead>
<tr>
<th>Model</th>
<th>R</th>
<th>R Square</th>
<th>Adjusted R Square</th>
<th>Std. Error of the Estimate</th>
<th>R Square Change</th>
<th>F Change</th>
<th>df1</th>
<th>df2</th>
<th>Sig. F Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.966a</td>
<td>.932</td>
<td>.932</td>
<td>.306</td>
<td>.932</td>
<td>2557.958</td>
<td>1</td>
<td>186</td>
<td>.000</td>
</tr>
<tr>
<td>2</td>
<td>.968b</td>
<td>.938</td>
<td>.937</td>
<td>.295</td>
<td>.005</td>
<td>16.235</td>
<td>1</td>
<td>185</td>
<td>.000</td>
</tr>
</tbody>
</table>

a. Predictors: (Constant), Safety of recruitment procedures
b. Predictors: (Constant), Safety of recruitment procedures, The appointment in permanent function
c. Dependent Variable: Recruitment procedures

Table No. 19

Table No. 19 shows the values of the three correlation coefficients, as follow:

Simple Correlation Coefficient R = (97%)
The Square Coefficient $R^2 = (94\%)$

Finally, Adjusted Square Coefficient $R^2 = (94\%)$

Which means that the independent variables (X_3, X_4), was able be interpreted (94\%) from changes in the Dependent Variable (Y), the remainder (6%) due to other factors.

2 Multiple regression analysis of the dependent variable (Y):

Analysis of the correlation has been made between the Recruitment procedures in the public sector and the Independent variables X_3, X_4

The following table shows two models for the entry of independents variables, to measure the correlation with the dependent variable.

<table>
<thead>
<tr>
<th>Model</th>
<th>Coefficientsa</th>
<th>95% Confidence Interval for B</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Unstandardized Coefficients</td>
<td>Standardized Coefficients</td>
</tr>
<tr>
<td>1 (Constant)</td>
<td>-2.29</td>
<td>.063</td>
</tr>
<tr>
<td>Safety of recruitment procedures</td>
<td>1.043</td>
<td>.021</td>
</tr>
<tr>
<td>2 (Constant)</td>
<td>-2.31</td>
<td>.061</td>
</tr>
<tr>
<td>Safety of recruitment procedures</td>
<td>.876</td>
<td>.046</td>
</tr>
<tr>
<td>The appointment in permanent function</td>
<td>.150</td>
<td>.037</td>
</tr>
</tbody>
</table>

a. Dependent Variable: Recruitment procedures

Table No. 20

Model 1 shows the variable X_3 (Safety of recruitment procedures) The first variable entering to the model because it has the largest correlation coefficient with dependent variable, where the correlation coefficient (1.043) and the value of statistical T (50.576) and we note the value of (p-value) = 0.000 is less than 0.05(probability –of-F-to- enter ≤ 0.05) This allows the independent variable X_3 to entering model. Therefore, the equation of the first model as follows:

$$Y = -0.229 + 0.021X_3 + 0.063$$

Model 2 reveals that the entrée of the variable that has the highest partial correlation coefficient with the dependent variable, and constant of X_3 that
variable is X_4 (The appointment in permanent function) where the correlation coefficient (0.150), and the value of (p-value) 0.000 less than 0.05 (probability –of-F-to-enter ≤ 0.05). This allows the independent variable X_4 to entering model. Therefore, the equation of the second model as follows:

$$Y = -0.231 + 0.046X_3 + 0.037X_4 + 0.061$$

$$Y = -0.12$$

The Second model is the final model and represents the best regression model and does not include the independents variables X_1, X_2 where did not show significant of variable that has the highest correlation with the dependent variable (probability –of-F-to-enter ≤ 0.05) therefore been excluded from the model.

<table>
<thead>
<tr>
<th>Model</th>
<th>Institution employees in human resource management</th>
<th>Policy of polarization and selection for new staff</th>
<th>The appointment in permanent function</th>
<th>Beta</th>
<th>t</th>
<th>Sig.</th>
<th>Partial Correlation</th>
<th>Collinearity Statistics</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.133</td>
<td>.082</td>
<td>.171</td>
<td></td>
<td></td>
<td></td>
<td>.155</td>
<td>.092</td>
</tr>
<tr>
<td></td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>2.132</td>
<td></td>
<td>.034</td>
<td>.092</td>
<td>.092</td>
</tr>
<tr>
<td></td>
<td>2.884</td>
<td>2.884</td>
<td>4.029</td>
<td></td>
<td></td>
<td></td>
<td>.207</td>
<td>.430</td>
</tr>
<tr>
<td></td>
<td>.004</td>
<td>.004</td>
<td>.000</td>
<td></td>
<td></td>
<td></td>
<td>.284</td>
<td>.187</td>
</tr>
<tr>
<td></td>
<td>.92</td>
<td>.430</td>
<td>.187</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Excluded Variables:

- a. Predictors in the Model: (Constant), Safety of recruitment procedures
- b. Predictors in the Model: (Constant), Safety of recruitment procedures, The appointment in permanent function
- c. Dependent Variable: Recruitment procedures

Table No. 21

3 Test of the Third hypothesis:

Null hypothesis (μ_0): Regression not significant (not different from zero)

Alternative hypothesis (μ_1): Regression significant (different from zero)
ANOVA table reveals that the value of sig = 0.000 less than 0.05

Therefore, μ₀ is rejected.

That means there is a positive correlation and has statistically significant
between Recruitment procedures in the public sector and performance of
Human Resource Management.

Whenever the recruitment procedures more disciplined and accuracy,
performance will be excellent.

Recruitment procedures should be accordance with legal standards and with
absolute transparency, so that is equality in employment opportunities for
everyone.

3.7.7.4 Analysis of Training and Development:

Variables Entered/Removed(a)

<table>
<thead>
<tr>
<th>Model</th>
<th>Variables Entered</th>
<th>Variables Removed</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Training programs to increase the capacity</td>
<td>.</td>
<td>Stepwise (Criteria: Probability-of-F-to-enter <= .050, Probability-of-F-to-remove >= .100).</td>
</tr>
</tbody>
</table>
Table No. 23

Table No.23 shows the entrée of variables to the model, Variable (Training programs to increase the capacity Training sessions) is the first variable that entered on the model, Variable (Training programs to increase the capacity) is the first variable that entered on the model, because it has big correlation coefficient simple with the dependent variable (The quality of training programs), and therefore the largest value of the statistic t from the following table (Coefficients), we note the value of (p-value) associated with the statistical t, is 0.000 is less than 0.05(probability of - F – to enter ≤ 0.05),
Second comes the variable (Weaknesses in the preparation of the staff),third comes the variable (Training sessions), We note the variable (New training programs) excluded (there is no significant presence with other variables).

1 Model Summary:

<table>
<thead>
<tr>
<th>Model</th>
<th>R</th>
<th>R Square</th>
<th>Adjusted R Square</th>
<th>Std. Error of the Estimate</th>
<th>R Square Change</th>
<th>F Change</th>
<th>df1</th>
<th>df2</th>
<th>Sig. F Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.85-4p</td>
<td>.729</td>
<td>.728</td>
<td>.610</td>
<td>.729</td>
<td>500.548</td>
<td>1</td>
<td>186</td>
<td>.000</td>
</tr>
<tr>
<td>2</td>
<td>.86-4p</td>
<td>.746</td>
<td>.743</td>
<td>.592</td>
<td>.017</td>
<td>12.493</td>
<td>1</td>
<td>185</td>
<td>.001</td>
</tr>
<tr>
<td>3</td>
<td>.87-4p</td>
<td>.752</td>
<td>.748</td>
<td>.587</td>
<td>.006</td>
<td>4.153</td>
<td>1</td>
<td>184</td>
<td>.043</td>
</tr>
</tbody>
</table>

a. Predictors: (Constant), Training programs to increase the capacity
b. Predictors: (Constant), Training programs to increase the capacity, Weaknesses in the preparation of the staff
c. Predictors: (Constant), Training programs to increase the capacity, Weaknesses in the preparation of the staff, Training:
d. Dependent Variable: The quality of training programs
Table No.24 shows the values of the three correlation coefficients, as follow:

Simple Correlation Coefficient $R = (87\%)$

The Square Coefficient $R^2 = (75\%)$

Finally, Adjusted Square Coefficient $R^2 = (75\%)$

Which means that the independent variables (X_4, X_1, X_2), was able be interpreted (75%) from changes in the Dependent Variable (Y), the remainder (25%) due to other factors.

2 Multiple regression analysis of the dependent variable (Y):

Analysis of the correlation has been made between the quality of training programs in the public sector and the Independents variables X_4, X_1, X_2.

The following table shows three models for the entry of independents variables, to measure the correlation with the dependent variable.

<table>
<thead>
<tr>
<th>Coefficientsa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
</tr>
<tr>
<td>-------</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>1 (Constant)</td>
</tr>
<tr>
<td>Training programs to increase the capacity</td>
</tr>
<tr>
<td>2 (Constant)</td>
</tr>
<tr>
<td>Training programs to increase the capacity</td>
</tr>
<tr>
<td>Weaknesses in the preparation of the staff</td>
</tr>
<tr>
<td>3 (Constant)</td>
</tr>
<tr>
<td>Training programs to increase the capacity</td>
</tr>
<tr>
<td>Weaknesses in the preparation of the staff</td>
</tr>
<tr>
<td>Training sessions</td>
</tr>
</tbody>
</table>

Dependent Variable: The quality of training programs

Table No. 25

Model 1 shows the variable X_4 (Training programs to increase the capacity)

The first variable entering to the model because it has the largest correlation coefficient with dependent variable, where the correlation coefficient (1.162)
and the value of statistical T (22.373) and we note the value of (p-value) $= 0.000$ is less than 0.05 (probability ≤ 0.05). This allows the independent variable X_4 to entering model.

Therefore, the equation of the first model as follows:

$$Y = 1.012 + 0.052X_4 + 0.108$$

Model 2 reveals that the entrée of the variable that has the highest partial correlation coefficient with the dependent variable, and constant of X_4 that variable is X_1 (Weaknesses in the preparation of the staff) where the correlation coefficient (-0.407), and the value of (p-value) 0.001 less than 0.05 (probability ≤ 0.05).

This allows the independent variable X_4 to entering model.

Therefore, the equation of the second model as follows:

$$Y = 1.062 + 0.128X_4 + 0.115X_1 + 0.106$$

Model 3 presents the variable that has the highest partial correlation coefficient with the dependent variable, and constant of X_4 and X_1 that variable is X_2 (Training sessions) where the correlation coefficient (0.618), and the value of (p-value) 0.043 less than 0.05 (probability ≤ 0.05).

This allows the independent variable X_2 to entering model.

Therefore, the equation of the third model as follows:

$$Y = 1.040 + 0.311X_4 + 0.114X_1 + 0.303X_2 + 0.105$$

$$Y = 1 + \text{approximately}$$

The third model is the final model and represents the best regression model and does not include the independent variable X_3 where did not show significant of variable that has the highest correlation with the dependent
variable (probability \(-of-F-to-enter \leq 0.05\)) therefore been excluded from the model.

Table No. 26

<table>
<thead>
<tr>
<th>Model</th>
<th>Excluded Variables</th>
<th>Beta</th>
<th>t</th>
<th>Sig.</th>
<th>Partial Correlation</th>
<th>Collinearity Statistics</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Weaknesses in the preparation of the staff</td>
<td>(-.333^{a})</td>
<td>(-3.535)</td>
<td>(.001)</td>
<td>(-.252)</td>
<td>(.155)</td>
</tr>
<tr>
<td></td>
<td>Training sessions</td>
<td>(.381^{a})</td>
<td>1.692</td>
<td>(.092)</td>
<td>(.123)</td>
<td>(.028)</td>
</tr>
<tr>
<td></td>
<td>New training programs</td>
<td>(.005^{a})</td>
<td>.073</td>
<td>(.942)</td>
<td>(.005)</td>
<td>(.294)</td>
</tr>
<tr>
<td>2</td>
<td>Training sessions</td>
<td>(.446^{b})</td>
<td>2.038</td>
<td>(.043)</td>
<td>(.149)</td>
<td>(.028)</td>
</tr>
<tr>
<td></td>
<td>New training programs</td>
<td>(.113^{b})</td>
<td>1.542</td>
<td>(.125)</td>
<td>(.113)</td>
<td>(.251)</td>
</tr>
<tr>
<td>3</td>
<td>New training programs</td>
<td>(.140^{c})</td>
<td>1.905</td>
<td>(.058)</td>
<td>(.139)</td>
<td>(.245)</td>
</tr>
</tbody>
</table>

- a. Predictors in the Model: (Constant), Training programs to increase the capacity
- b. Predictors in the Model: (Constant), Training programs to increase the capacity, Weaknesses the preparation of the staff
- c. Predictors in the Model: (Constant), Training programs to increase the capacity, Weaknesses the preparation of the staff, Training sessions
- d. Dependent Variable: The quality of training programs

3 Test of the fourth hypothesis:

Null hypothesis \((\mu_0)\): Regression not significant (not different from zero)

Alternative hypothesis \((\mu_1)\): Regression significant (different from zero)
ANOVA table reveals that the value of \(\text{sig} = 0.000 \) less than 0.05

Therefore, \(\mu_0 \) is rejected.

That means there is a positive correlation and has statistically significant between the quality of training programs in the public sector and performance of Human Resources Management.

Quality of training programs and the right choice, all of this gives a positive result on the trainee; he will do a good and appropriate job and thus achieve the required performance from the management of human resources.

3.7.7.5 Analysis of Industrial Relations:

Variables Entered/Removed(a)

<table>
<thead>
<tr>
<th>Model</th>
<th>Variables Entered</th>
<th>Variables Removed</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table No. 27
New strategies

Stepwise (Criteria: Probability-of-F-to-enter <= .050, Probability-of-F-to-remove >= .100).

The functional drop-out from organization

Stepwise (Criteria: Probability-of-F-to-enter <= .050, Probability-of-F-to-remove >= .100).

Table No. 28 shows the entrée of variables to the model, Variable (New strategies) is the first variable that entered on the model, Variable (New strategies) is the first variable that entered on the model, because it has big correlation coefficient simple with the dependent variable (The relation between the various management levels), and therefore the largest value of the statistic t from the following table (Coefficients), we note the value of (p-value) associated with the statistical t, is 0.000 is less than 0.05(probability of -F – to enter ≤ 0.05), Second comes the variable (The functional drop-out from organization), We note the variables (the coordination between the educational institutions and the organizations) and (the employee constancy in work) excluded (there is no significant presence with other variables).

1 Model Summary:

<table>
<thead>
<tr>
<th>Model</th>
<th>R</th>
<th>R Square</th>
<th>Adjusted R Square</th>
<th>Std. Error of the Estimate</th>
<th>R Square Change</th>
<th>F Change</th>
<th>df1</th>
<th>df2</th>
<th>Sig. F Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.919<sup>a</sup></td>
<td>.845</td>
<td>.844</td>
<td>.340</td>
<td>.845</td>
<td>1015.992</td>
<td>1</td>
<td>186</td>
<td>.000</td>
</tr>
<tr>
<td>2</td>
<td>.929<sup>b</sup></td>
<td>.863</td>
<td>.861</td>
<td>.321</td>
<td>.017</td>
<td>23.582</td>
<td>1</td>
<td>185</td>
<td>.000</td>
</tr>
</tbody>
</table>

a. Predictors: (Constant), New strategies

b. Predictors: (Constant), New strategies, The functional drop-out from organization

c. Dependent Variable: The relation between the various management levels

Table No. 29 shows the values of the three correlation coefficients, as follow:

Simple Correlation Coefficient R = (93%)

The Square Coefficient $R^2 = (86\%)$

Finally, Adjusted Square Coefficient $R^2_c = (86\%)$
Which means that the independent variables \((X_1, X_3,\ldots)\), was able be interpreted \((86\%)\) from changes in the Dependent Variable \((Y)\), the remainder \((14\%)\) due to other factors.

2 Multiple regression analysis of the dependent variable \((Y)\):

Analysis of the correlation has been made between the industrial relations in the public sector and the Independents variables \(X_1, X_3\).

The following table shows two models for the entry of independents variables, to measure the correlation with the dependent variable.

<table>
<thead>
<tr>
<th>Model</th>
<th>Unstandardized Coefficients</th>
<th>Standardized Coefficients</th>
<th>t</th>
<th>Sig.</th>
<th>95% Confidence Interval for B</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(Constant)</td>
<td>-.361</td>
<td>.662</td>
<td>5.820</td>
<td>.000</td>
</tr>
<tr>
<td></td>
<td>New strategies</td>
<td>.893</td>
<td>.028</td>
<td>.919</td>
<td>31.875</td>
</tr>
<tr>
<td>2</td>
<td>(Constant)</td>
<td>-.161</td>
<td>.072</td>
<td>2.245</td>
<td>.026</td>
</tr>
<tr>
<td></td>
<td>New strategies</td>
<td>.678</td>
<td>.052</td>
<td>.698</td>
<td>13.168</td>
</tr>
<tr>
<td></td>
<td>The functional drop-out from organization</td>
<td>.231</td>
<td>.048</td>
<td>.258</td>
<td>4.856</td>
</tr>
</tbody>
</table>

Table No. 30

Model 1 shows the variable \(X_1\) (New strategies) The first variable entering to the model because it has the largest correlation coefficient with dependent variable, where the correlation coefficient \((0.893)\) and the value of statistical \(T\) \((31.857)\) and we note the value of \((p\text{-value}) = 0.000\) is less than \(0.05\)\((\text{probability -of-F-to- enter} \leq 0.05)\) This allows the independent variable \(X_1\) to entering model. Therefore, the equation of the first model as follows:

\[Y = 0.361 + 0.028X_1 + 0.062 \]

Model 2 reveals that the entrée of the variable that has the highest partial correlation coefficient with the dependent variable, and constant of \(X_1\) that variable is \(X_3\) (The functional drop-out from organization) where the correlation coefficient \((0.231)\), and the value of \((p\text{-value}) 0.000\) less than \(0.05\).
(probability –of-F-to-enter ≤ 0.05). This allows the independent variable X₃ to entering model. Therefore, the equation of the second model as follows:

\[Y = 0.161 + 0.052X₁ + 0.048X₃ + 0.072 \]

\[Y = 0.28 \]

The second model is the final model represents the best regression model and does not include the independents variables X₂ and X₄ where did not show significant of variable that has the highest correlation with the dependent variable (probability –of-F-to-enter ≤ 0.05) therefore been excluded from the model.

<table>
<thead>
<tr>
<th>Excluded Variables^c</th>
<th>Model</th>
<th>Beta</th>
<th>t</th>
<th>Sig.</th>
<th>Partial Correlation</th>
<th>Collinearity Statistics</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>.138</td>
<td>2.496</td>
<td>.013</td>
<td>.180</td>
<td>.264</td>
</tr>
<tr>
<td></td>
<td></td>
<td>.258</td>
<td>4.856</td>
<td>.000</td>
<td>.336</td>
<td>.264</td>
</tr>
<tr>
<td></td>
<td></td>
<td>.242</td>
<td>4.297</td>
<td>.000</td>
<td>.301</td>
<td>.241</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>.083</td>
<td>1.536</td>
<td>.126</td>
<td>.112</td>
<td>.250</td>
</tr>
<tr>
<td></td>
<td></td>
<td>.118</td>
<td>1.659</td>
<td>.099</td>
<td>.121</td>
<td>.144</td>
</tr>
</tbody>
</table>

a. Predictors in the Model: (Constant), New strategies
b. Predictors in the Model: (Constant), New strategies, The functional drop-out from organization
c. Dependent Variable: The relation between the various management levels

Table No. 31

3 Test of the fifth hypothesis:

Null hypothesis (μ₀): Regression not significant (not different from zero)

Alternative hypothesis (μ₁): Regression significant (different from zero)
ANOVA table reveals that the value of sig = 0.000 less than 0.05. Therefore, μ_0 is rejected.

That means there is a positive correlation and has statistically significant between the relations inside institution in the public sector and performance of Human Resource Management.

The Coordination between the various levels of management and employees also good relationship with each other leads to great results and good level of performance.

3.7.7.6 Analysis of Employees Evaluation:

Variables Entered/Removed (a)

<table>
<thead>
<tr>
<th>Model</th>
<th>Variables Entered</th>
<th>Variables Removed</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Regression</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Residual</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Regression</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Residual</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a. Predictors: (Constant), New strategies

b. Predictors: (Constant), New strategies, The functional drop-out from organization
c. Dependent Variable: The relation between the various management levels

Table No. 32
Table No. 33 shows the entrée of variables to the model, Variable (The confidence in management skills) is the first variable that entered on the model, Variable (The confidence in management skills) is the first variable that entered on the model, because it has big correlation coefficient simple with the dependent variable (the qualitative achievement in functionality), And therefore the largest value of the statistic t from the following table (Coefficients), we note the value of (p-value) associated with the statistical t, is 0.000 is less than 0.05(probability of - F – to enter ≤ 0.05), Second comes the variable (Time of the assessment),after that comes the variable (The system of follow-up and evaluation), We note the variable(the relation between the results of the evaluation and promotion system) excluded (there is no significant presence with other variables).

1 Model Summary:

Table No. 34 shows the values of the three correlation coefficients, as follow:

Simple Correlation Coefficient R = (93%)
The Square Coefficient $R^2 = (87\%)$

Finally, Adjusted Square Coefficient $R^2\^ = (87\%)$

Which means that the independent variables (X_2, X_4, X_3), was able be interpreted (87\%) from changes in the Dependent Variable (Y), the remainder (13\%) due to other factors.

2 Multiple regression analysis of the dependent variable (Y):

Analysis of the correlation has been made between the employees evaluation in the public sector and the Independents variables (X_2, X_4, X_3).

The following table shows three models for the entry of independents variables, to measure the correlation with the dependent variable.

Table No. 35

<table>
<thead>
<tr>
<th>Model</th>
<th>B</th>
<th>Std. Error</th>
<th>Beta</th>
<th>95% Confidence Interval for B</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.428</td>
<td>.080</td>
<td>5.367</td>
<td>28.779</td>
</tr>
<tr>
<td></td>
<td>.020</td>
<td>.035</td>
<td>.904</td>
<td>.950</td>
</tr>
<tr>
<td></td>
<td>2.587</td>
<td>.093</td>
<td>1.020</td>
<td>.035</td>
</tr>
<tr>
<td></td>
<td>.271</td>
<td>.904</td>
<td>5.585</td>
<td>.093</td>
</tr>
<tr>
<td></td>
<td>.950</td>
<td>.904</td>
<td>5.950</td>
<td>.271</td>
</tr>
<tr>
<td></td>
<td>1.090</td>
<td>.950</td>
<td>5.109</td>
<td>.950</td>
</tr>
<tr>
<td>2</td>
<td>.950</td>
<td>.950</td>
<td>5.950</td>
<td>.950</td>
</tr>
<tr>
<td></td>
<td>.271</td>
<td>.950</td>
<td>5.271</td>
<td>.950</td>
</tr>
<tr>
<td></td>
<td>.950</td>
<td>.950</td>
<td>5.950</td>
<td>.950</td>
</tr>
<tr>
<td></td>
<td>1.090</td>
<td>.950</td>
<td>5.109</td>
<td>.950</td>
</tr>
<tr>
<td>3</td>
<td>.950</td>
<td>.950</td>
<td>5.950</td>
<td>.950</td>
</tr>
<tr>
<td></td>
<td>.271</td>
<td>.950</td>
<td>5.271</td>
<td>.950</td>
</tr>
<tr>
<td></td>
<td>.950</td>
<td>.950</td>
<td>5.950</td>
<td>.950</td>
</tr>
<tr>
<td></td>
<td>1.090</td>
<td>.950</td>
<td>5.109</td>
<td>.950</td>
</tr>
</tbody>
</table>

a. Dependent Variable: The qualitative achievement in functionality

Model 1 shows the variable X_2 (The confidence in management skills) The first variable entering to the model because it has the largest correlation coefficient with dependent variable, where the correlation coefficient (1.020)
and the value of statistical T (28.779) and we note the value of (p-value) = 0.000 is less than 0.05 (probability –of-F-to-enter ≤ 0.05) This allows the independent variable X_2 to entering model.

Therefore, the equation of the first model as follows:

$$Y=0.428+0.035X_2+0.080$$

Model 2 reveals that the entrée of the variable that has the highest partial correlation coefficient with the dependent variable, and constant of X_2 that variable is X_4 (Time of the assessment) where the correlation coefficient (0.488), and the value of (p-value) 0.000 less than 0.05 (probability –of-F-to-enter ≤ 0.05). This allows the independent variable X_4 to entering model.

Therefore, the equation of the second model as follows:

$$Y=0.093+0.061X_2+0.060X_4+0.080$$

Model 3 presents the variable that has the highest partial correlation coefficient with the dependent variable, and constant of X_2and X_4 that variable is X_3 (The system of follow-up and evaluation) where the correlation coefficient (0.161), and the value of (p-value) 0.014 less than 0.05 (probability –of-F-to-enter ≤ 0.05). This allows the independent variable X_3 to entering model. Therefore, the equation of the third model as follows:

$$Y=0.007+0.073X_2+0.059X_4+0.065X_3+0.089$$

$$Y = 0.16$$

The third model is the final model represents the best regression model and does not include the independent variable X_1 where did not show significant of variable that has the highest correlation with the dependent variable (probability –of-F-to-enter ≤ 0.05) therefore been excluded from the model.
3 Test of the sixth hypothesis:

Null hypothesis (μ_0): Regression not significant (not different from zero)

Alternative hypothesis (μ_1): Regression significant (different from zero)

Table No. 36

Excluded Variables

<table>
<thead>
<tr>
<th>Model</th>
<th>Beta In</th>
<th>t</th>
<th>Sig.</th>
<th>Partial Correlation</th>
<th>Collinearity Statistics</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.045</td>
<td>.610</td>
<td>.543</td>
<td>.045</td>
<td>.185</td>
</tr>
<tr>
<td></td>
<td>.106</td>
<td>2.034</td>
<td>.043</td>
<td>.148</td>
<td>.358</td>
</tr>
<tr>
<td></td>
<td>.439</td>
<td>8.117</td>
<td>.000</td>
<td>.512</td>
<td>.250</td>
</tr>
<tr>
<td>2</td>
<td>.108</td>
<td>1.718</td>
<td>.087</td>
<td>.126</td>
<td>.183</td>
</tr>
<tr>
<td></td>
<td>.111</td>
<td>2.482</td>
<td>.014</td>
<td>.180</td>
<td>.358</td>
</tr>
<tr>
<td>3</td>
<td>.033</td>
<td>.434</td>
<td>.665</td>
<td>.032</td>
<td>.127</td>
</tr>
</tbody>
</table>

a. Predictors in the Model: (Constant), The confidence in management skills

b. Predictors in the Model: (Constant), The confidence in management skills, Time of the assessment

c. Predictors in the Model: (Constant), The confidence in management skills, Time of the assessment, The system of follow-up and evaluation

d. Dependent Variable: The qualitative achievement in functionality

Table No. 37

ANOVA

<table>
<thead>
<tr>
<th>Model</th>
<th>Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Regression</td>
<td>208.080</td>
<td>1</td>
<td>208.080</td>
<td>828.250</td>
</tr>
<tr>
<td></td>
<td>Residual</td>
<td>46.729</td>
<td>186</td>
<td>.251</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>254.809</td>
<td>187</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Regression</td>
<td>220.352</td>
<td>2</td>
<td>110.176</td>
<td>591.537</td>
</tr>
<tr>
<td></td>
<td>Residual</td>
<td>34.457</td>
<td>185</td>
<td>.186</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>254.809</td>
<td>187</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Regression</td>
<td>221.468</td>
<td>3</td>
<td>73.823</td>
<td>407.412</td>
</tr>
<tr>
<td></td>
<td>Residual</td>
<td>33.341</td>
<td>184</td>
<td>.181</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>254.809</td>
<td>187</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a. Predictors: (Constant), The confidence in management skills

b. Predictors: (Constant), The confidence in management skills, Time of the assessment

c. Predictors: (Constant), The confidence in management skills, Time of the assessment, The system of follow-up and evaluation

d. Dependent Variable: The qualitative achievement in functionality

Table No. 37
ANOVA table reveals that the value of sig = 0.000 less than 0.05

Therefore, μ_0 is rejected.

That means there is a positive correlation and has statistically significant between the employees’ evaluation in the public sector and performance of Human Resource Management.

3.7.7.7 Analysis of Employees Motivation:

<table>
<thead>
<tr>
<th>Model</th>
<th>Variables Entered</th>
<th>Variables Removed</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Salaries and Wages</td>
<td>.</td>
<td>Stepwise (Criteria: Probability-of-F-to-enter <= .050, Probability-of-F-to-remove >= .100).</td>
</tr>
<tr>
<td>2</td>
<td>The decision by senior management</td>
<td>.</td>
<td>Stepwise (Criteria: Probability-of-F-to-enter <= .050, Probability-of-F-to-remove >= .100).</td>
</tr>
</tbody>
</table>

Table No. 38

dependent variable: The coordination in the policies and plans

Table No. 38 shows the entrée of variables to the model, Variable (Salaries and Wages) is the first variable that entered on the model, Variable (Salaries and Wages) is the first variable that entered on the model, because it has big correlation coefficient simple with the dependent variable (The coordination in the policies and plans), and therefore the largest value of the statistic t from the following table (Coefficients), we note the value of (p-value) associated with the statistical t, is 0.000 is less than 0.05(probability of - F – to enter ≤ 0.05), Second comes the variable (The decision by senior management), We note the variables (Adherence to the employee and appreciation of his work)
and (Rights of workers) excluded (there is no significant presence with other variables).

1 Model Summary:

<table>
<thead>
<tr>
<th>Model</th>
<th>R</th>
<th>R Square</th>
<th>Adjusted R Square</th>
<th>Std. Error of the Estimate</th>
<th>R Square Change</th>
<th>F Change</th>
<th>df1</th>
<th>df2</th>
<th>Sig. F Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.855</td>
<td>.732</td>
<td>.730</td>
<td>.486</td>
<td>.732</td>
<td>507.243</td>
<td>1</td>
<td>186</td>
<td><.000</td>
</tr>
<tr>
<td>2</td>
<td>.905</td>
<td>.820</td>
<td>.818</td>
<td>.400</td>
<td>.088</td>
<td>90.439</td>
<td>1</td>
<td>185</td>
<td><.000</td>
</tr>
</tbody>
</table>

a. Predictors: (Constant), Salaries and Wages
b. Predictors: (Constant), Salaries and Wages, The decision by senior management
c. Dependent Variable: The coordination in the policies and plans

Table No. 39 shows the values of the three correlation coefficients, as follow:

Simple Correlation Coefficient R = (90%)

The Square Coefficient R² = (82%)

Finally, Adjusted Square Coefficient R²adj = (82%)

Which means that the independent variables (X₄, X₂), was able be interpreted (82%) from changes in the Dependent Variable (Y), the remainder (18%) due to other factors.

2 Multiple regression analysis of the dependent variable (Y):

Analysis of the correlation has been made between the employees motivation in the public sector and the Independents variables X₄, X₂

The following table shows two models for the entry of independents variables, to measure the correlation with the dependent variable.
Table No. 40

Model 1 shows the variable X_4(Salaries and Wages) The first variable entering to the model because it has the largest correlation coefficient with dependent variable, where the correlation coefficient (0.701) and the value of statistical T (11.634) and we note the value of (p-value) = 0.000 is less than 0.05(probability –of-F-to-enter ≤ 0.05) This allows the independent variable X_4 to entering model.

Therefore, the equation of the first model as follows:

$$Y=0.755+0.031X_4+0.065$$

Model 2 reveals that the entrée of the variable that has the highest partial correlation coefficient with the dependent variable, and constant of X_4 that variable is X_2 (The decision by senior management) where the correlation coefficient (0.373), and the value of (p-value) 0.000 less than 0.05 (probability –of-F-to-enter ≤ 0.05).

This allows the independent variable X_2 to entering model.

Therefore, the equation of the second model as follows:

$$Y=-0.116+0.036X_4+0.039X_2+0.106$$

$Y = 0.02$
The second model is the final model and represents the best regression model and does not include the independents variables X_1 and X_3 where did not show significant of variable that has the highest correlation with the dependent variable (probability −of F-to-enter ≤ 0.05) therefore been excluded from the model.

Table No. 41

<table>
<thead>
<tr>
<th>Model</th>
<th>Beta</th>
<th>t</th>
<th>Sig.</th>
<th>Partial Correlation</th>
<th>Collinearity Statistics</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.394</td>
<td>5.971</td>
<td>.000</td>
<td>.402</td>
<td>.279</td>
</tr>
<tr>
<td>2</td>
<td>.330</td>
<td>4.480</td>
<td>.000</td>
<td>.313</td>
<td>.241</td>
</tr>
</tbody>
</table>

Excluded Variables

<table>
<thead>
<tr>
<th>Model</th>
<th>Adherence to the employee and appreciation of his work</th>
<th>The decision by senior management</th>
<th>Rights of workers</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.394<sup>a</sup></td>
<td>.419<sup>a</sup></td>
<td>.330<sup>a</sup></td>
</tr>
<tr>
<td>2</td>
<td>.045<sup>b</sup></td>
<td>-1.03<sup>b</sup></td>
<td></td>
</tr>
</tbody>
</table>

Table No. 41

3 Test of the seventh hypothesis:

Null hypothesis (μ_0): Regression not significant (not different from zero)

Alternative hypothesis (μ_1): Regression significant (different from zero)

ANOVA

<table>
<thead>
<tr>
<th>Model</th>
<th>Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Regression</td>
<td>119.936</td>
<td>1</td>
<td>119.936</td>
<td>507.243</td>
</tr>
<tr>
<td></td>
<td>Residual</td>
<td>43.979</td>
<td>186</td>
<td>.236</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>163.915</td>
<td>187</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Regression</td>
<td>134.376</td>
<td>2</td>
<td>67.188</td>
<td>420.796</td>
</tr>
<tr>
<td></td>
<td>Residual</td>
<td>29.539</td>
<td>185</td>
<td>.160</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>163.915</td>
<td>187</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table No. 42
ANOVA table reveals that the value of $\text{sig} = 0.000$ less than 0.05

Therefore, μ_0 is rejected.

That means there is a positive correlation and has statistically significant between employees’ motivation in the public sector and performance of Human Resource Management.

Figure No. 7

Histogram depicts on overall picture of the data is distributed according to the normal distribution.
3.7.7.8 Analysis of Services System for Employees:

Variables Entered/Removed(a)

<table>
<thead>
<tr>
<th>Model</th>
<th>Variables Entered</th>
<th>Variables Removed</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>The complacency in the work</td>
<td>.</td>
<td>Stepwise (Criteria: Probability-of-F-to-enter <= .050, Probability-of-F-to-remove >= .100).</td>
</tr>
<tr>
<td>2</td>
<td>The health care system</td>
<td>.</td>
<td>Stepwise (Criteria: Probability-of-F-to-enter <= .050, Probability-of-F-to-remove >= .100).</td>
</tr>
<tr>
<td>3</td>
<td>There is no dedication in the work of staff</td>
<td>.</td>
<td>Stepwise (Criteria: Probability-of-F-to-enter <= .050, Probability-of-F-to-remove >= .100).</td>
</tr>
</tbody>
</table>

a Dependent Variable: The issues of workers

Table No. 43

Table No.43 shows the entrée of variables to the model, Variable (The complacency in the work) is the first variable that entered on the model, Variable (The complacency in the work) is the first variable that entered on the model, because it has big correlation coefficient simple with the dependent variable (The issues of workers), and therefore the largest value of the statistic t from the following table (Coefficients), we note the value of (p-value) associated with the statistical t, is 0.000 is less than 0.05(probability of - F – to enter ≤ 0.05), Second comes the variable (The health care system),third comes the variable (There is no dedication in the work of staff), We note the variable (The social activities and recreational) excluded (there is no significant presence with other variables).
1 Model Summary:

Table No. 44 shows the values of the three correlation coefficients, as follow:

Simple Correlation Coefficient \(R = (94\%) \)

The Square Coefficient \(R^2 = (89\%) \)

Finally, Adjusted Square Coefficient \(R^2- = (89\%) \)

Which means that the independent variables \((X_2, X_4, X_1)\), was able be interpreted \((89\%)\) from changes in the Dependent Variable \((Y)\), the remainder \((11\%)\) due to other factors.

2 Multiple regression analysis of the dependent variable \((Y)\):

Analysis of the correlation has been made between the services system for employees in the public sector and the Independents variables \(X_2, X_4, X_1\)

The following table shows three models for the entry of independents variables, to measure the correlation with the dependent variable.
Model 1 shows the variable X_2 (The complacency in the work) The first variable entering to the model because it has the largest correlation coefficient with dependent variable, where the correlation coefficient (1.003) and the value of statistical T (27.834) and we note the value of (p-value) = 0.000 is less than 0.05(probability –of-F-to-enter ≤ 0.05) This allows the independent variable X_3 to entering model.

Therefore, the equation of the first model as follows:

$$Y = - 0.198 + 0.036X_2 + 0.087$$

Model 2 reveals that the entrée of the variable that has the highest partial correlation coefficient with the dependent variable, and constant of X_2 that variable is X_4 (The health care system) where the correlation coefficient (0.487), and the value of (p-value) 0.000 less than 0.05 (probability –of-F-to-enter ≤ 0.05).

This allows the independent variable X_2 to entering model.

Therefore, the equation of the second model as follows:

$$Y = - 0.141 + 0.049X_2 + 0.046X_4 + 0.069$$
Model 3 presents the variable that has the highest partial correlation coefficient with the dependent variable, and constant of X2 and X4 that variable is X1 (There is no dedication in the work of staff) where the correlation coefficient (0.239), and the value of (p-value) 0.004 less than 0.05 (probability –of-F-to-enter ≤ 0.05). This allows the independent variable X3 to entering model. Therefore, the equation of the third model as follows:

\[Y = -0.231 + 0.064X_2 + 0.046X_4 + 0.055X_1 + 0.069 \]

\[Y = -0.11 \]

The third model is the final model and represents the best regression model and does not include the independent variable X3 where did not show significant of variable that has the highest correlation with the dependent variable (probability –of-F-to-enter ≤ 0.05) therefore been excluded from the model.

Excluded Variables

<table>
<thead>
<tr>
<th>Model</th>
<th>Beta</th>
<th>t</th>
<th>Sig.</th>
<th>Partial Correlation</th>
<th>Collinearity Statistics</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>In</td>
<td></td>
<td></td>
<td></td>
<td>Tolerance</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>There is no dedication in the work of staff</td>
<td>.378<sup>a</sup></td>
<td>5.903</td>
<td>.000</td>
<td>.398</td>
<td>.214</td>
</tr>
<tr>
<td>The social activities and recreational</td>
<td>.322<sup>a</sup></td>
<td>7.269</td>
<td>.000</td>
<td>.471</td>
<td>.416</td>
</tr>
<tr>
<td>The health care system</td>
<td>.463<sup>a</sup></td>
<td>10.586</td>
<td>.000</td>
<td>.614</td>
<td>.341</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>There is no dedication in the work of staff</td>
<td>.238<sup>b</sup></td>
<td>4.356</td>
<td>.000</td>
<td>.306</td>
<td>.199</td>
</tr>
<tr>
<td>The social activities and recreational</td>
<td>.000<sup>b</sup></td>
<td>-0.04</td>
<td>.997</td>
<td>.000</td>
<td>.171</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The social activities and recreational</td>
<td>-.067<sup>c</sup></td>
<td>-1.110</td>
<td>.268</td>
<td>-.082</td>
<td>.160</td>
</tr>
</tbody>
</table>

- a. Predictors in the Model: (Constant), The complcency in the work
- b. Predictors in the Model: (Constant), The complcency in the work, The health care system
- c. Predictors in the Model: (Constant), The complcency in the work, The health care system, Ther is no dedication in the work of staff
- d. Dependent Variable: The issues of workers

Table No. 46
3 Test of the eighth hypothesis:

Null hypothesis (μ_0): Regression not significant (not different from zero)

Alternative hypothesis (μ_1): Regression significant (different from zero)

ANOVA table reveals that the value of sig = 0.000 less than 0.05

Therefore, μ_0 is rejected.

That means there is a positive correlation and has statistically significant
between the services system for employees in the public sector and
Histogram depicts on overall picture of data is distributed according to the normal distribution.
3.7.7.9 Analysis of Educational level of Employees:

<table>
<thead>
<tr>
<th>Model</th>
<th>Variables Entered</th>
<th>Variables Removed</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Impact of the training on the job</td>
<td></td>
<td>Stepwise (Criteria: Probability-of-F-to-enter <= 0.05, Probability-of-F-to-remove >= .100).</td>
</tr>
<tr>
<td>2</td>
<td>The pressures of different work</td>
<td></td>
<td>Stepwise (Criteria: Probability-of-F-to-enter <= 0.05, Probability-of-F-to-remove >= .100).</td>
</tr>
<tr>
<td>3</td>
<td>The relationship between employee study and field of work</td>
<td></td>
<td>Stepwise (Criteria: Probability-of-F-to-enter <= 0.05, Probability-of-F-to-remove >= .100).</td>
</tr>
</tbody>
</table>

Table No. 48 shows the entrée of variables to the model, Variable (Impact of the training on the job) is the first variable that entered on the model, Variable (Impact of the training on the job) is the first variable that entered on the model, because it has big correlation coefficient simple with the dependent variable (The burden of new appointments and training programs), and therefore the largest value of the statistic t from the following table (Coefficients), we note the value of (p-value) associated with the statistical t, is 0.000 is less than 0.05(probability of - F – to enter ≤ 0.05), Second comes the variable (The pressures of different work),after that comes the variable (The relationship between employee study and field of work), We note the variable(The employee contentment) excluded (there is no significant presence with other variables).
1 Model Summary:

Table No. 49 shows the values of the three correlation coefficients, as follow:

Simple Correlation Coefficient $R = (92\%)$

The Square Coefficient $R^2 = (84\%)$

Finally, Adjusted Square Coefficient $R^2_\text{adj} = (84\%)$

Which means that the independent variables (X_1, X_2, X_4), was able be interpreted (84%) from changes in the Dependent Variable (Y), the remainder (16%) due to other factors.

2 Multiple regression analysis of the dependent variable (Y):

Analysis of the correlation has been made between the educational level of employees in the public sector and the Independents variables X_1, X_2, X_4

The following table shows three models for the entry of independents variables, to measure the correlation with the dependent variable.
Model 1 shows the variable X₁ (Impact of the training on the job) The first variable entering to the model because it has the largest correlation coefficient with dependent variable, where the correlation coefficient (0.770) and the value of statistical T (22.391) and we note the value of (p-value) = 0.000 is less than 0.05(probability –of-F-to-enter ≤ 0.05). This allows the independent variable X₁ to entering model. Therefore, the equation of the first model as follows:

\[Y = 0.878 + 0.034X₁ + 0.079 \]

Model 2 reveals that the entrée of the variable that has the highest partial correlation coefficient with the dependent variable, and constant of X₁ that variable is X₂ (The pressures of different work) where the correlation coefficient (0.355), and the value of (p-value) 0.000 less than 0.05 (probability –of-F-to-enter ≤ 0.05). This allows the independent variable X₂ to entering model. Therefore, the equation of the second model as follows:

\[Y = 0.519 + 0.040X₁ + 0.033X₂ + 0.077 \]
Model 3 presents the variable that has the highest partial correlation coefficient with the dependent variable, and constant of X_1 and X_2 that variable is X_4 (The relationship between employee study and field of work) where the correlation coefficient (-0.112), and the value of (p-value) 0.024 less than 0.05 (probability –of-F-to- enter ≤ 0.05).

This allows the independent variable X_4 to entering model.

Therefore, the equation of the third model as follows:

$$Y = 0.582 + 0.041X_1 + 0.051X_2 - 0.049X_4 + 0.075$$

$$Y = 0.69$$

The third model is the final model and represents the best regression model and does not include the independent variable X_3 where did not show significant of variable that has the highest correlation with the dependent variable (probability –of-F-to-enter ≤ 0.05) therefore been excluded from the model.

<table>
<thead>
<tr>
<th>Excluded Variablesd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
</tr>
<tr>
<td>-------</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>3</td>
</tr>
</tbody>
</table>

a Predictors in the Model: (Constant), Impact of the training on the job

b Predictors in the Model: (Constant), Impact of the training on the job, The pressures of different work

c Predictors in the Model: (Constant), Impact of the training on the job, The pressures of different work, The relationship between employee study and field of work

d Dependent Variable: The burden of new appointments and training programs

Table No. 51
3 Test of the ninth hypothesis:

Null hypothesis (μ_0): Regression not significant (not different from zero)

Alternative hypothesis (μ_1): Regression significant (different from zero)

Table No. 52

ANOVA table reveals that the value of sig = 0.000 less than 0.05

Therefore, μ_0 is rejected.

That means there is a positive correlation and has statistically significant between the educational level of employees in the public sector and performance of Human Resource Management.
Histogram depicts an overall picture of the data is distributed according to the normal distribution.

Dependent Variable: The burden of new appointments and training programs

Histogram

Regression Standardized Residual

Frequency

Mean = 2.78E-17
Std. Dev. = 0.992
N = 188

Figure No. 9
3.7.7.10 Summary of Statistical Analysis:

Human Resource Management Performance in Public Sector

Legislations and Laws 30%
Human Resources Management functions 26%
Instructive level of Employees 28%
Human Resources Management Practices 28%

Figure No.10
Figure No.10 depicts an overall picture of human resource management performance in public sector industries in Yemen as follows:

1 - After analysis and study in detailed of existent laws & legislations in public sector industries in Yemen, it was found that only 30% of them are useful and relevant. As far as other laws & legislations is concerned, they are found to be very old, complex and does not survive a propose.

So, current laws are not suitable for human resource management practices in public sector. Where, disability rate of these laws is 70%.

Today, the survival of an organization will be at stake if it is not able to change with time. Government should issues new laws where innovation and continuous change become a way of life.

Modern laws are extremely important for providing a true and comprehensive picture of any situation and can be used as evidence. Using modern laws reduces the margin of error in judgment, rather it makes easier for groups to agree on common judgment and accept it as solution.

2 - Nothing can thwart a human resource management more than a work random that signals to the staff a lack of sincerity about or commitment to the functions and principles of quality management.

Manager of human resource management department must reinforce the dedication and commitment. When the work style is not in consonance with the human resource management requirement, the employees lose focus, motivation and initiative, which are vital in the implementation of human resource management functions.

Here, we found that human resource management in public sector industries in Yemen practicing its functions only by the rate of 26%. That means; the deactivation rate of human resource management functions is 74%.

The management must identify and remove the roadblocks and barriers that impede human resource management department and encourage continuous improvement efforts. Removing these impediments strengthen employees abilities.
3 - The human resource management department is based on the principle that professional employee gives good work. The prime focus in human resource management department is to own a professional staff to assuring that the work requirements are met fully.

The human resource management department is aimed at - firstly, to achieve, sustain and improve the quality of performance; secondly, assurance to the management that internal controls are effective and thirdly, assurance to the customer that the service conforms to his requirement.

Employee educational level of human resource management department in public sector industries in Yemen is suitable for department work only by the rate of 28%.

That means the rate of employees who have not qualifications compatible with department work 72%.

After knowing the human resource management practices in public sector industries in Yemen in this chapter we need to identify the human resource management practices in private sector industries in Yemen in next chapter.