Table of Contents

Chapter 1 Introduction

1.1 Background .. 2
1.2 History .. 2
1.3 Structure of layered double hydroxide 2
 1.3.1 Metal cations in layer 4
 1.3.2 Interlayer anions 4
 1.3.3 Orientation of anions in interlayer 8
 1.3.4 Water in LDHs 9
 1.3.5 Staking and Polytypes 9
1.4 Synthesis of Layered double hydroxide 10
 1.4.1 Direct methods 10
 1.4.1.1 Coprecipitation 10
 1.4.1.2 Urea method 11
 1.4.1.3 Sol-gel technique 11
 1.4.2 Indirect methods 12
 1.4.2.1 Anion exchange based methods 12
 1.4.2.2 Non anion exchange methods 12
 1.4.3 Post synthesis treatments 13
 1.4.3.1 Hydrothermal Treatments 13
 1.4.3.2 Ultrasound Irradiation 14
 1.4.3.3 Microwave Irradiation 14
 1.4.4 Synthesis of spinel form 15
1.4.5 Synthesis of waste 15
1.5 Characterization of layered double hydroxide 16
 1.5.1 Structural properties 17
 1.5.1.1 Powder X-ray diffraction study 17
 1.5.1.2 FT-IR study 19
 1.5.2 Textural properties (N_2 adsorption desorption isotherm study) 20
1.5.3 Thermal analysis 22
1.5.4 Elemental analysis 23
1.5.5 Anion exchange property 23
1.5.6 Molecular modelling 24

1.6 Applications of Layered double hydroxide 24
1.6.1 In catalysis 25
 1.6.1.1 Basicity of LDHs 28
1.6.2 As gas adsorbent 29
1.6.3 As Anion exchanger 32
1.6.4 LDHs as stabilizing agents 34
 1.6.4.1 For polymers 34
 1.6.4.2 For Dyes 35
1.6.5 LDHs as flame retardants 35
1.6.6 LDHs as heat retention additives in horticultural plastic films 36
1.6.7 Biological applications of LDHs 37
 1.6.7.1 Pharmaceutical applications 37
 1.6.7.2 Genetic application 38
 1.6.7.3 Cosmetic application 40
 1.6.7.4 Agricultural and environmental applications 40
1.6.8 Ceramic precursor 41
1.6.9 Application as optical material 42

1.7 Summery of work in present thesis 43

Chapter 2 LDHs based adsorbents for Carbon dioxide 49-154
Part I Synthesis & Characterization of Mg-Al-CO$_3$ LDHs for CO$_2$ Adsorption 53-84
2.1.1 Materials 54
2.1.2 Synthesis of Mg-Al-CO$_3$ LDHs 54
 2.1.2.1 Preparation of Solutions 55
 2.1.2.2 Mode of addition of solution A and solution B 56
i) Precipitation Method 56
ii) Co-precipitation Method 56
2.1.2.3 Addition temperature of solution A and B 56
2.1.2.4 Agitation effect 56
2.1.2.5 Drying temperature 57
2.1.3 Characterization of LDHs 57
 2.1.3.1 Powder X-Ray Diffraction Studies (PXRD) 57
 2.1.3.2 FT-IR-Spectroscopic studies 58
 2.1.3.3 Thermal Gravimetric Analysis 58
 2.1.3.4 Surface Area Analysis 58
 2.1.3.5 Chemical Analysis 58
2.1.4 CO\textsubscript{2} Adsorption-Desorption Study 59
2.1.5 Results and Discussion 59
 2.1.5.1 Characterization of LDHs 59
 2.1.5.1.1 Powder X-Ray Diffraction Studies 59
 2.1.5.1.1.1 Effect of Mg/Al ratio 60
 2.1.5.1.1.2 Effect of mode of addition 61
 2.1.5.1.1.3 Effect of agitation 61
 2.1.5.1.1.4 Effect of precursor addition and drying temperature 61
 2.1.5.1.1.5 Lattice parameters 64
 2.1.5.1.2 FT-IR-Spectroscopic studies 67
 2.1.5.1.3 Thermal Analysis 68
 2.1.5.1.4 Surface Area Analysis 69
 2.1.5.2 CO\textsubscript{2} Adsorption Study 69
 2.1.5.2.1 Model fitting 69
 2.1.5.2.2 Effect of different synthesis parameters 75
 2.1.5.2.3 Effect of activation temperature 82
2.1.6 Conclusions

Part II Synthesis & Characterization of Mg-Al-LDHs having varied intercalated anions for CO\textsubscript{2} Adsorption

2.2.1 Materials
2.2.2 Synthesis of Mg-Al LDHs with varied intercalated anions
2.2.3 Characterization of LDHs
2.2.4 Results and Discussion
 2.2.4.1 Characterization of LDHs
 2.2.4.1.1 Powder X-Ray Diffraction Studies
 2.2.4.1.1.1 Lattice parameters
 2.2.4.1.1.2 High Temperature-Powder X-Ray Diffraction (HT-PXRD) Studies
 2.2.4.1.2 FT-IR-Spectroscopic studies
 2.2.4.1.3 Thermal Analysis
2.2.4.2 CO\textsubscript{2} Adsorption- Desorption Study
 2.2.4.2.1 Model fitting
 2.2.4.2.2 Effect of varied intercalated anions
 2.2.4.2.3 Effect of different activation temperatures for LDH with varied intercalated anions
2.2.5 Conclusions

Part III Breakthrough CO\textsubscript{2} Adsorption Study on Mg-Al LDHs with different Intercalated

2.3 Breakthrough CO\textsubscript{2} adsorption study
2.3.1 Experimental
2.3.2 Results and discussion
 2.3.2.1 CO\textsubscript{2} Adsorption Breakthrough study on Mg-Al-CO\textsubscript{3}-9
 2.3.2.1.1 Activation at 100°C
 2.3.2.1.2 Activation at 150°C
 2.3.2.1.3 Activation at 250°C
 2.3.2.1.4 Activation at 350°C
2.3.2.1.5 Breakthrough CO$_2$ adsorption study on calcined Mg-Al-CO$_3$-9 131
2.3.2.1.6 CO$_2$ adsorption Breakthrough study on commercial sample (PMG 63) 133
2.3.2.2 CO$_2$ adsorption Breakthrough study on Mg-Al-Fe1 135
 2.3.2.2.1 Activation at 100°C 136
 2.3.2.2.2 Activation at 150°C 138
 2.3.2.2.3 Activation at 250°C 140
 2.3.2.2.4 Activation at 350°C 141
 2.3.2.2.5 Breakthrough CO$_2$ adsorption study on calcined Mg-Al-Fe1 143
2.3.2.3 Breakthrough CO$_2$ Adsorption study on Mg-Al-Ace1 144
 2.3.2.3.1 Activation at 100°C 145
 2.3.2.3.2 Activation at 150°C 147
 2.3.2.3.3 Activation at 250°C 149
 2.3.2.3.4 Activation at 350°C 150
 2.3.2.3.5 Breakthrough CO$_2$ adsorption study on calcined Mg-Al-Ace1 152
2.3.3 Conclusions 154

Chapter 3 LDHs as Solid Base Catalysts for Epoxidation of Styrene with Molecular Oxygen 155-209
Part I Mg-Al & Co-Al Binary LDHs as Solid Base Catalysts for Epoxidation of Styrene with Molecular Oxygen 158-188
3.1.2 Materials 159
 3.1.2 Synthesis of Co-Al and Mg-Al LDHs with varied cation molar ratios 159
3.1.3 Characterization of LDHs 160
 3.1.3.1 Powder X-Ray Diffraction Studies (PXRD): 160
 3.1.3.2 FT-IR-Spectroscopic studies: 160
3.1.3.3 Thermal Gravimetric Analysis: 161
3.1.3.4 Surface Area Analysis: 161
3.1.3.5 Chemical Analysis: 161
3.1.3.6 Diffuse reflectance spectroscopy (DRS) 161
3.1.3.7 Temperature-programmed desorption (TPD) 162
3.1.4 Catalytic activity for epoxidation of styrene with O$_2$ 162
3.1.5 Results and Discussion 163
 3.1.5.1 Characterization of LDHs 163
 3.1.5.1.1 Powder X-Ray Diffraction Studies 163
 3.1.5.1.1.1 Lattice parameters 164
 3.1.5.1.2 FT-IR Spectroscopic studies 169
 3.1.5.1.3 Thermal Analysis 170
 3.1.5.1.4 Surface Area Analysis 172
 3.1.5.1.5 Diffuse reflectance spectroscopy (DRS) 173
 3.1.5.1.6 Temperature-programmed desorption (TPD) 174
 3.1.5.2 Epoxidation of styrene to styrene oxide 175
 3.1.5.2.1 Effect of cation molar ratios 176
 3.1.5.2.2 Effect of reaction temperature 178
 3.1.5.2.3 Kinetic studies 179
 3.1.5.2.4 Effect of catalyst concentration 181
 3.1.5.2.5 Effect of calcinations 183
 3.1.5.2.6 Effect of reconstruction and water content 183
 3.1.5.2.7 Effect of DMF volume 184
 3.1.5.2.8 Reusability of binary LDH 186
 3.1.6 Conclusions 188

Part II Co-Mg-Al Ternary LDHs as Solid Base Catalysts for Epoxidation of Styrene with Molecular Oxygen 189-209

3.2.1 Synthesis of Co-Mg-Al LDHs with varied cation combinations 190
3.2.2 Characterization of LDHs 191
3.2.3 Results and Discussion
3.2.3.1 Characterization of LDHs
3.2.3.1.1 Powder X-Ray Diffraction Studies
3.2.3.1.1.1 Lattice parameters
3.2.3.1.2 FT-IR-Spectroscopic studies
3.2.3.1.3 Thermal Analysis
3.2.3.1.4 Surface Area Analysis
3.2.3.1.5 Diffuse reflectance spectroscopy (DRS)
3.2.3.1.6 Temperature-programmed desorption (TPD)
3.2.3.2 Epoxidation of styrene to styrene oxide
3.2.3.2.1 Effect of cation molar ratio
3.2.3.2.2 Effect of reaction temperature
3.2.3.2.3 Kinetic study
3.2.3.2.4 Effect of catalyst concentration
3.2.3.2.5 Effect of calcinations
3.2.3.2.6 Effect of DMF volume
3.2.3.2.7 Reusability of catalyst
3.2.4 Conclusions

Chapter 4 LDHs as Adsorbent for Nitrate
4.1 Materials
4.2 Synthesis of LDHs under optimized conditions with varied cation combinations
4.3 Characterization
4.3.1 Powder X-Ray Diffraction Studies (PXRD):
4.3.2 FT-IR-Spectroscopic studies:
4.3.3 Thermal Gravimetric Analysis:
4.3.4 Surface Area Analysis:
4.3.5 Chemical Analysis:
4.3.6 Study of nitrate removal
4.4 Results and discussion

4.4.1 Structural properties

4.4.1.1 Powder X-Ray Diffraction Studies

4.4.1.1.1 Lattice parameters

4.4.1.2 Thermal Analysis

4.4.1.3 FT-IR-Spectroscopic studies

4.4.1.4 Surface Area Analysis

4.4.2 Removal of nitrate on LDHs

4.4.2.1 Effect of adsorbent concentration

4.4.2.2 Effect of adsorbate concentration

4.4.2.3 Effect of cation molar ratio and nitrate concentration with time on nitrate removal

4.4.2.3.1 Mg-Al LDHs

4.4.2.3.2 Co-Al-LDH

4.4.2.3.3 Zn-Al-LDH

4.4.2.3.4 Ca-Al-LDH

4.4.2.3.5 Co-Fe LDH

4.4.2.3.6 Co-Mg-Al-LDH

4.4.2.4 Effect of calcinations

4.4.2.4.1 Calcined Mg-Al LDH

4.4.2.4.2 Calcined Co-Al LDH

4.4.2.4.3 Calcined Zn-Al LDH

4.4.2.4.4 Ca-Al LDH

4.4.2.5 Effect of reconstruction with chloride ion

4.4.2.6 Mechanism of nitrate uptake from aqueous solution

4.5 Conclusion

Chapter 5 Summary, Conclusions and Future Prospects

References

List of publications