Table of Contents

Acknowledgements

Abstract

List of Tables

List of Figures

List of Abbreviations

Chapter 1: Introduction

Chapter 2: Review of Literature

- 2.1 Historical background.
- 2.2 General Considerations.
 - 2.2.1 Characteristic features and diversity of Genus *Mycobacterium*
 - 2.2.2 The Pathogen
 - 2.2.3 Cultural characteristic
 - 2.2.4 Morphology of *Mycobacterium*
 - 2.2.5 Classification of *Mycobacterium*
 - 2.2.6 *Mycobacterium tuberculosis* complex
 - 2.2.7 Evolution of *M. Tuberculosis*
 - 2.2.8 Cell wall composition of *M. tuberculosis*
- 2.3 Pathogenesis of *M. Tuberculosis*
 - 2.3.1 Transmission of *M. Tuberculosis*
 - 2.3.2 Stages of Pulmonary TB
 - 2.3.2.1 First encounters- *M. tuberculosis* and macrophages
 - 2.3.2.2 Balance between *M. tuberculosis* and host immune system
 - 2.3.2.3 Intracellular multiplication of *M. tuberculosis* in alveolar macrophages
 - 2.3.2.4 Granuloma formation: Host versus Mycobacteria
 - 2.3.2.4.1 Insight into the function of granuloma
 - 2.3.2.4.2 Caseous necrosis
 - 2.3.2.4.3 Nature of caseous necrosis
 - 2.3.2.4.4 Mechanism of caseous necrosis
 - 2.3.2.4.5 Organization of the caseous necrosis
 - 2.3.2.4.6 Softening of the caseum
 - 2.3.2.4.7 Evolution of the lung cavity
 - 2.3.2.5 Host defense against TB

Page No.

1-5

6-43
2.10.6 The resistance-nodulation-cell division (RND) family
2.10.7 The multidrug and toxic compounds extrusion (MATE) family
2.11 Chemotherapy of TB
2.11.1 Short course chemotherapy of TB
2.11.2 First-line medications
2.11.2.1 Rifampicin
2.11.2.1.1 Introduction
2.11.2.1.2 Mode of action
2.11.2.1.3 Pharmacokinetics
2.11.2.1.4 Pharmacodynamics and efficacy
2.11.2.1.5 Safety and tolerability
2.11.2.1.6 Drawback of rifampicin
2.11.2.2 Isoniazid
2.11.2.3 Pyrazinamide
2.11.2.4 Ethambutol
2.11.2.5 Streptomycin
2.11.3 Second line medication
2.12 History of Piperine
2.12.1 Chemical structure
2.12.1.2 Piperine in ayurveda
2.12.1.3 Importance of Piperine
2.12.1.4 Action and Pharmacology

Chapter 3: MATERIALS AND METHODS

3.1 Equipments
3.2 Reagents and Chemicals
3.3 Preparation of culture media
3.3.1 Lowenstein Jensen medium (LJ medium)
3.3.2 Preparation of Media for Susceptibility Testing
3.3.2.1 Middlebrook 7H9 Broth
3.3.2.2 Middlebrook 7H10 Agar
3.4 Drug stock solution
3.4.1 Rifampicin stock solution
3.4.2 Piperine stock solution
3.5 Mycobacterium culture and growth conditions
3.6 Collection of clinical samples for isolation of clinical isolates
3.7 In-vitro study
3.7.1 Agar diffusion method
3.7.2 In-vitro combination studies
3.7.3 Time-kill studies
3.7.4 Selection of resistant mutants in-vitro
3.7.5 Post antibiotic effect (PAE)
3.7.6 Selection and Susceptibility of Resistant Mutants of M. Tuberculosis
3.8 Characterization of Mutation in rpoB
3.8.1 Generation of mutants
3.8.2 Isolation of DNA
3.8.3 Agarose gel electrophoresis
3.8.4 Quantification of DNA
3.8.5 Identification of M. tuberculosis using IS6110 from sputum samples
3.8.6 Identification of M. tuberculosis using 16S gene from sputum samples
3.8.7 PCR amplification of rpoB gene
3.8.8 PCR product purification
3.8.9 Sequencing of PCR product
3.8.10 Sequencing Analysis
3.9 Expression study of Rv1258c (putative efflux gene) by quantitative real-time RT-PCR
3.9.1 Exposure of M. tuberculosis to rifampicin
3.9.2 Isolation of RNA
3.9.3 Primer designing for Quantitative Real-Time PCR analysis
3.9.4 Construction of a standard curve
3.9.5 Accuracy and reproducibility of the QRT-PCR assay
3.9.6 PCR assay sensitivity
3.9.7 Analysis of Mycobacterial efflux pump gene using QRT-PCR
3.9.8 Structure prediction of Rv1258c and docking studies with piperine
3.10 Immunomodulatory activity of piperine
3.10.1 In-vitro study
3.10.1.1 Isolation of mice Splenocytes
3.10.1.2 Cell proliferation assay
3.10.2 Enzyme Linked Immunosorbent Assay (ELISA)
3.10.2.1 Cytokine estimation by ELISA
3.10.2.2 Nitrite contents measurement in peritoneal macrophages
3.11 In-vivo study
3.11.1 Preparation of piperine
3.11.2 Preparation of rifampcin
3.11.3 Animals
3.11.4 Low Infection of \textit{M. tuberculosis}
3.11.5 CFU determination
3.11.6 Histopathology study
3.12 Flowcytometric analysis of lymphocyte sub-population
3.12.1 Blood collection
3.12.2 Intracellular cytokine estimation
3.12.3 Lymphocyte immunophenotyping
3.13 Relative expression of Cytokines using QRT-PCR
3.13.1 RNA isolation from mouse lung
3.13.2 Construction of a standard curve
3.13.3 Accuracy and reproducibility of the QRT-PCR assay
3.13.4 PCR assay sensitivity
3.13.5 Analysis of cytokines (IFN-\(\gamma\), IL-2, IL-4) using QRT-PCR
3.14 In-vivo efficacy of rifampicin in combination with piperine against \textit{M. tuberculosis}
3.14.1 High dose Infection of \textit{M. tuberculosis}
3.14.2 Combination efficacy of rifampicin and piperine
3.14.3 Statistical analysis

\textbf{Chapter 4: RESULTS} \hspace{1cm} \textbf{69-80}
4.1 Collection of clinical samples for isolation for clinical isolates
4.2 In-vitro study
4.2.1 Agar diffusion method
4.2.2 In-vitro combination studies
4.2.3 Effect of piperine on the kill kinetics of rifampicin (Time-kill studies)
4.2.4 Frequency of emergence of rifampicin resistance in presence of piperine
4.2.5 Post antibiotics effect
4.2.6 Selection and Susceptibility of resistant mutants of \textit{M. Tuberculosis}
4.3 Characterization of \textit{rpoB}

4.3.1 Isolation and Quantification of DNA

4.3.2 Identification of clinical isolates using \textit{IS6110} and 16S gene from sputum samples

4.3.3 PCR amplification of \textit{rpoB} gene

4.3.4 Sequencing Analysis

4.4 Analysis of \textit{Rv1258c} expression using qRT-PCR

4.4.1 Isolation and quantification of RNA

4.4.2 Standard curve analysis of \textit{sigA}

4.4.3 Assessment of expression of \textit{Rv1258c} in \textit{M. tuberculosis} rif by qRT-PCR

4.4.4 Docking of piperine to the active site of \textit{Rv1258c}

4.5 Immunomodulatory effect of Piperine

4.5.1 \textit{In-vitro} immunomodulatory effect of Piperine

4.5.1.1 Cell proliferation assay

4.5.1.2 Cytokines estimation by ELISA

4.5.1.3 Nitric oxide measurement in peritoneal macrophages

4.5.2 \textit{In vivo} study

4.5.2.1 Infection of \textit{M. tuberculosis}

4.5.2.2 CFU determination

4.6 Histopathology studies

4.7 Flow cytometric analysis of lymphocyte sub-population

4.7.1 Intracellular cytokines estimation

4.7.2 Analysis of lymphocyte sub-populations

4.8 Relative expression of cytokine using qRT-PCR

4.8.1 RNA isolation from mouse lung

4.8.2 Standard curve analysis of \textit{β-actin}

4.8.3 Expression study of cytokines using qRT-PCR

4.9 \textit{In-vivo} efficacy of rifampicin in combination with piperine against \textit{M. tuberculosis}

4.9.1 Infection of \textit{M. tuberculosis}

4.9.2 Combination study of piperine and rifampicin in murine model of \textit{M. tuberculosis}
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>DISCUSSION</td>
<td>81-86</td>
</tr>
<tr>
<td>6</td>
<td>SUMMARY AND CONCLUSION</td>
<td>87-88</td>
</tr>
<tr>
<td>7</td>
<td>REFERENCES</td>
<td>89-123</td>
</tr>
<tr>
<td>8</td>
<td>APPENDIX</td>
<td>124-134</td>
</tr>
<tr>
<td></td>
<td>CREDENTIALS</td>
<td>135-136</td>
</tr>
</tbody>
</table>