LIST OF TABLES

<table>
<thead>
<tr>
<th>Table No.</th>
<th>Description</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 1.1</td>
<td>Current distortion limits for general distribution systems (120V through 69000V)</td>
<td>8</td>
</tr>
<tr>
<td>Table 1.2</td>
<td>Voltage distortion limits</td>
<td>9</td>
</tr>
<tr>
<td>Table 1.3</td>
<td>Current waveforms and their THD for various types of converters</td>
<td>15</td>
</tr>
<tr>
<td>Table 4.1</td>
<td>Fuzzy rule representation</td>
<td>111</td>
</tr>
<tr>
<td>Table 6.1</td>
<td>THD comparison of source current of LV system for different compensations</td>
<td>146</td>
</tr>
<tr>
<td>Table 6.2</td>
<td>THD comparison of source current of MV system for different compensations</td>
<td>167</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure No.</th>
<th>Description</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fig. 1.1</td>
<td>Typical power disturbances</td>
<td>2</td>
</tr>
<tr>
<td>Fig. 1.2</td>
<td>Transformer distorted magnetizing current and its harmonic spectrum</td>
<td>10</td>
</tr>
<tr>
<td>Fig. 1.3</td>
<td>Time graph of a furnace current during the starting phase of melting</td>
<td>12</td>
</tr>
<tr>
<td>Fig. 1.4</td>
<td>Harmonic spectrum of an arc furnace current (a) During melting (b) During refining</td>
<td>12</td>
</tr>
<tr>
<td>Fig. 1.5</td>
<td>The current wave form of a compact fluorescent lamp and its harmonic spectrum</td>
<td>13</td>
</tr>
<tr>
<td>Fig. 1.6</td>
<td>Voltage waveform and harmonic spectrum of the current in a diode bridge with DC side capacitive filter.</td>
<td>14</td>
</tr>
<tr>
<td>Fig. 1.7</td>
<td>Waveform of the supply voltage and current of a six-pulse thyristor bridge with DC side reactor.</td>
<td>15</td>
</tr>
<tr>
<td>Fig. 2.1</td>
<td>Common types of passive filters and their configurations</td>
<td>26</td>
</tr>
<tr>
<td>Fig. 2.2</td>
<td>Generalized block diagram APF</td>
<td>28</td>
</tr>
<tr>
<td>Fig. 2.3</td>
<td>Principle configuration of a VSI based shunt APF</td>
<td>30</td>
</tr>
<tr>
<td>Fig. 2.4</td>
<td>Principle configuration of a VSI based series APF</td>
<td>31</td>
</tr>
<tr>
<td>Fig. 2.5</td>
<td>Operation principle of series APF: (a) Single-phase equivalent of</td>
<td>39</td>
</tr>
</tbody>
</table>

APF: Active Power Filter
series APF, (b) Fundamental equivalent circuit, and (c) Harmonic equivalent circuit

Fig. 2.6 Hybrid APFs: (a) Combination of shunt APF and shunt passive filter and b) Combination of series APF and shunt passive filter

Fig. 2.7 Block diagram of linear control technique

Fig. 2.8 Gating signal generation by linear control

Fig. 2.9 Block diagram of hysteresis control technique

Fig. 2.10 Gating signal generation by hysteresis current controller

Fig. 2.11 Simplified circuit and generated output voltage of

(a)(b) Two-level, (c)(d) Three-level and (e)(f) n-level inverter

Fig. 2.12 Three level diode clamped inverter

Fig. 2.13 Three level capacitor clamped multilevel inverter

Fig. 2.14 (a) Cascade H-Bridge inverter and (b) Output waveform

Fig. 2.15 (a) Asymmetric cascaded inverter configuration with 2 cells and (b) Output waveforms

Fig. 2.16 a) Asymmetric cascaded inverter with nine levels and
b) Output waveforms

Fig. 2.17 One phase-leg of an asymmetric single DC-supply cascaded H-bridge inverter

Fig. 2.18 One phase-leg of a hybrid asymmetric IGBT and GTO cascaded H-bridge inverter

Fig. 2.19 Asymmetric cascaded multilevel inverter based SAPF

Fig. 2.20 Output voltage wave form of 11-level cascaded inverter
Fig.2.21 Multilevel carrier-based SH-PWM showing carrier bands, modulation waveform and inverter output waveform 64

Fig.2.22 Multilevel carrier-based SFO-PWM showing carrier bands, modulation waveform and inverter output waveform 65

Fig.2.23 Variable switching frequency multicarrier optimal pulse width modulation (VSFMC-O- PWM) 67

Fig.2.24 Carrier and reference waveform arrangements for a five level phase shifted PWM strategy for cascaded inverter 68

Fig.2.25 APOD-PWM technique: a) Reference and carrier signals, b) Output phase voltage waveform. 69

Fig.2.26 POD-PWM technique: a) Reference and carrier signals, b) Output phase voltage waveform. 70

Fig. 2.27 PD-PWM technique: a) Reference and carrier signals, b) Output phase voltage waveform. 71

Fig.3.1 Operation principle of the proposed shunt hybrid APF 78

Fig.3.2 Three phase Shunt active filter scheme 80

Fig.3.3 System configuration with proposed SHAPF 83

Fig.3.4 (a) Single phase VSI and (b) Its Hysteresis current controller 89

Fig.3.5 Block diagram of FLC 91

Fig. 3.6 Design of tuned passive filters 93

Fig. 3.7 Simplified model of the proposed shunt hybrid APF 94

Fig.3.8 Circuit diagram of a three-phase cascaded multilevel inverter 95

Fig.3.9 Modulation strategy of hybrid multilevel inverters 98
Fig. 4.1 Simulation model of LV test system
Fig. 4.2 Simulink model of three phase distribution source
Fig. 4.3 Simulink model three phase nonlinear load block
Fig. 4.4 Simulation model of LV test system with proposed SHAF
Simulink model of “VSI” block.
Fig. 4.5 Fig. 4.6 Details of “Overall Control System of SAF” block
Fig. 4.7 Simulink model of d-q-0 theory based reference current estimator
Fig. 4.8 Simulink model of hysteresis current controller for phase -a
Fig. 4.9 Simulink model of fuzzy logic controller
Fig. 4.10 The degree of membership functions for (a) The error (b) The derivative of error and (c) The output
Fig. 4.11 Simulink model of tuned passive filter block
Fig. 4.12 Complete simulation model of the basic shunt APF
Fig. 5.1 Simulink model of MV test system
Fig. 5.2 Simulink model of three phase AC source block
Simulink model of three phase nonlinear load block
Fig. 5.4 Simulation model of MV test system with proposed 7-level SHAPF compensation
Fig. 5.5 Three phase asymmetric cascaded seven level inverter model.
Fig. 5.6 Details of asymmetric cascaded seven level inverter for phase–a.
Fig. 5.7 D-q-0 theory based compensating reference current generator
Fig. 5.8. Simulink model of CSFSHPWM for phase –a.
Fig. 5.9 Simulation model of SLSHAF compensated MV test system with three phase fault.
Fig. 5.10 The degree of membership functions for (a) The error (b) The derivative of error and (c) The output
Fig. 5.11 Simulink model of tuned passive filter block
Fig. 5.12 Complete simulation model of the basic shunt APF
Fig. 5.13 Simulink model of MV test system with proposed 7-level SHAPF compensation
Fig. 5.14 Three phase asymmetric cascaded seven level inverter model.
Fig. 5.15 Details of asymmetric cascaded seven level inverter for phase–a.
Fig. 5.16 D-q-0 theory based compensating reference current generator
Fig. 5.17 Simulink model of CSFSHPWM for phase –a.
Fig. 5.18 Simulation model of SLSHAF compensated MV test system with three phase fault.
Fig.5.10 Simulation model of MV test system with basic ACSLISAPF compensation.

Fig.6.1 Results of LV test system without compensation:
(a) Non linear load current for three phases
(b) Source current for three phases
(c) Three phase source voltages
(d) Phase angle comparison between source voltage and source current for phase-a.

Fig.6.2 SAPF Configuration

Fig.6.3 Simulation results of LV test system with basic SAPF compensation - load current, compensation current and source current waveforms for phase – a

Fig.6.4 Source voltage and source current for phase–a

Fig.6.5 (a) Three phase SAF compensation currents and b) Three phase source currents of SAF compensated LV test system model

Fig.6.6 Compensation reference currents in a-b-c reference frame

Fig.6.7 DC bus capacitor voltage

Fig.6.8 Non linear load current, SAF compensation current, TPF current and source current for phase-a of LV test system with proposed SHAF compensation

Fig.6.9 Three phase a) SAF currents b) TPF currents and c) Source currents of SHAF compensated LV test system

Fig.6.10 LV test system source voltage and source current comparison for
phase-a with SHAF compensation

Fig. 6.11 Harmonic spectrum of phase-a load current of LV test system without any compensation

Fig. 6.12 Harmonic spectrum of source current of with basic SAPF compensation (a) Phase-a (b) Phase-b (c) Phase-c

Fig. 6.13 Harmonic spectrum of source current of LV test system with proposed SHAF compensation (a) Phase-a (b) Phase-b (c) Phase-c.

Fig. 6.14 Simulation results of MV test system without compensation

a) Three phase nonlinear load currents b) Three phase source currents c) Three phase source voltages d) Phase angle comparison between source voltage and source current for phase-a

Fig. 6.15 Seven level voltages generated by the asymmetric cascaded inverter for (a) Phase-a (b) Phases a, b and c.

Fig. 6.16 (a) Three phase ACSLISAPF currents and (b) Three phase source currents with ACSLI based SAPF compensation for MV test system.

Fig. 6.17 Load current, filter current and source current for phase- a of MV test system with ACSLI based SAPF compensation.

Fig. 6.18 Phase angle comparison between source voltage and source current for phase–a after compensation with ACSLISAF

Fig. 6.19 a) Compensation reference currents in a-b-c reference frame
and b) Three phase modulating signals for CSFSHPWM for ACSLISAPF compensation.

Fig. 6.20 DC bus capacitor voltage on LV cell.

Fig. 6.21 Carrier signals and reference signal for phase-a of CSFSHPWM

Fig. 6.22 A small section of the gating signals for phase–a of ACSLI.

Fig 6.23 The reference compensating currents in a-b-c reference frame for ACSLI based SHAPF compensation

Fig 6.24 Modulating signal and the triangular carrier signals of CSFSHPWM of phase–a in SHAPF compensation

Fig. 6.25 Output voltage of ACSLI based SAPF a) For phase-a b) For three phases.

Fig. 6.26 Compensating three phase currents of ACSLI based SAPF in SHAF topology.

Fig. 6.27 Three phase tuned passive filter currents in ACSLISHAPF topology.

Fig. 6.28 Three phase source currents of MV test system with ACSLI based SHAPF compensation.

Fig. 6.29 Load current, ACSLI based SAPF current, tuned passive filter current and source current for phase- a with ACSLI based SHAPF compensation.

Fig. 6.30 Harmonic spectrum of phase–a source current of MV test system without any compensation.

Fig. 6.31 Harmonic spectra of source currents of MV test system with ACSLISAPF compensation a) For phase–a b) For phase-b and c)
For phase-c

Fig. 6.32 Source current harmonic spectra of MV test system with ACSLISHAPF compensation a) For phase –a
b) For phase-b and c) For phase-c

Fig. 6.33 Three phase (a) Load Currents and b) Compensating currents and (c) Source currents of ACSLISHAPF compensated test system for three phase fault.

Fig. A1 Equivalent circuit of shunt active power filter

Fig. A.2 Switching ripple of the compensation current