Contents

ABSTRACT i

1 INTRODUCTION 1
1.1 OBJECTIVE AND SCOPE ... 1
1.2 FUNDAMENTAL DEFINITIONS .. 1
1.2.1 Molecular Diffusion ... 2
1.2.2 Convective Dispersion 4
1.3 LITERATURE REVIEW .. 8
1.3.1 Dispersion in Newtonian Fluids 8
1.3.2 Dispersion in porous media 18
1.4 PRESENT WORK .. 22

2 BASIC EQUATIONS, APPROXIMATIONS, BOUNDARY CONDITIONS AND
DIMENSIONLESS PARAMETERS 24
2.1 BASIC EQUATIONS .. 24
2.1.1 Continuity Equation (Conservation of Mass) 26
2.1.2 Momentum Equation Through Fluid Saturated Porous Medium 26
2.1.3 Diffusion Equation (Conservation of Species) 29
2.2 BOUNDARY CONDITIONS .. 32
2.2.1 Boundary Conditions on Velocity 32
2.2.2 Boundary Conditions on Concentration 32
2.3 DIMENSIONLESS PARAMETERS 33

3 MATHEMATICAL MODEL FOR UNSTEADY CONVECTIVE DIFFUSION
OF A PASSIVE SOLUTE IN A POROUS CHANNEL FLOW OF A NEWTONIAN LIQUID 36
3.1 INTRODUCTION ... 36
3.2 MATHEMATICAL FORMULATION AND SOLUTION OF MOMENTUM EQUATION 38
3.3 DERIVATION OF DISPERSION MODEL ... 44
3.4 RESULTS AND DISCUSSIONS ... 50
3.5 CONCLUSIONS ... 54

4 MATHEMATICAL MODEL FOR UNSTEADY CONVECTIVE DIFFUSION OF A PASSIVE SOLUTE IN A POROUS CHANNEL FLOW OF A NEWTONIAN LIQUID WITH VARIABLE VISCOITY 69
4.1 INTRODUCTION ... 69
4.2 MATHEMATICAL FORMULATION AND SOLUTION OF MOMENTUM EQUATION ... 70
4.3 DERIVATION OF DISPERSION MODEL .. 78
4.4 RESULTS AND DISCUSSIONS ... 83
4.5 CONCLUSIONS .. 89

5 MATHEMATICAL MODEL FOR THREE DIMENSIONAL LAMINAR DISPERSION OF A SOLUTE IN A POROUS MEDIUM FLOW OF A NEWTONIAN LIQUID 104
5.1 INTRODUCTION ... 104
5.2 MATHEMATICAL FORMULATION AND SOLUTION OF MOMENTUM EQUATION ... 105
5.3 DERIVATION OF DISPERSION MODEL .. 111
5.4 RESULTS AND DISCUSSIONS ... 123
5.5 CONCLUSIONS .. 126

6 MATHEMATICAL MODEL FOR UNSTEADY CONVECTIVE DIFFUSION OF A REACTIVE SOLUTE IN A POROUS CHANNEL FLOW OF A NEWTONIAN LIQUID 140
6.1 INTRODUCTION ... 140
6.2 MATHEMATICAL FORMULATION AND SOLUTION OF MOMENTUM EQUATION ... 141
6.3 DERIVATION OF DISPERSION MODEL .. 144
6.4 RESULTS AND DISCUSSIONS ... 158
6.5 CONCLUSIONS .. 162
Chapter 1

INTRODUCTION

1.1 OBJECTIVE AND SCOPE

The objective of this dissertation is to present a treatment of unsaturated soil-structure interaction of pollutants. The structure is a Naturally Occurring Porous Media and its analysis highlights the potential applications in waste management and contaminant transport and containment. An analytical solution is also applied to the fields like bio-technologies and microbial applications. Here, the problem may then be approached from a more fundamental perspective.

1.2 FUNDAMENTAL DEFINITIONS

A contaminant that has been deposited in the soil and has moved through the soil can contaminate the water and has entered the groundwater system. This may affect the groundwater as well as the local water quality. In the context of contaminated soils and groundwater, it is important to understand the processes that lead to contamination and the methods available for remediation. This dissertation presents a detailed analysis of the processes involved in contaminant transport through unsaturated soils and discusses various remediation technologies.