CONTENTS

List of Figures
……………. 11

List of Tables
……………. 13

Chapter 1. Introduction

1.1 Introduction
……………. 15

1.2 Evolution of Architectures
……………. 17

1.2.1 Algorithm-to-Hardware Direct Mapping Approach (Dedicated Hardware Architectures)
……………. 18

1.2.2 General-purpose Computer Architecture Approach
……………. 18

1.2.3 Programmable Digital Signal Processor Approach
……………. 20

1.2.4 Hardware-software co-design Approach
……………. 20

1.2.5 ASIP Approach
……………. 21

1.2.6 Organization of Thesis
……………. 22

Chapter 2. Literature Survey

2.1 Review of ASIP-related Literature
……………. 25

2.2 Introduction to Speech Synthesis
……………. 30

2.4.1 Advantages and Disadvantages of Different Speech Synthesis Techniques
……………. 35

2.3 Klatt’s Speech Synthesizer
……………. 36

2.3.1 Introduction
……………. 36

2.3.2 Control Parameters
……………. 39

2.3.3 Basic Building Block of Synthesizer
……………. 42

2.3.4 Sources of Sound
……………. 43

2.3.5 Functions in Klatt’s C code
……………. 45
Chapter 3. ASIP Design Methodology

3.1 Steps in ASIP Design

3.1.1 Application Analysis

3.1.2 Datapath (execution unit) micro-architecture design

3.1.3 Instruction set Design

3.1.4 Instruction set Implementation

3.1.5 Design and Implementation of Control Word

3.1.6 Exploration of Hardware Algorithms and their FPGA Implementations for Datapath (execution unit) Functional Units

3.1.7 Integration of ASIP and its FPGA Implementation

Chapter 4. Application analysis

4.1 Introduction

4.2 Results of Application Analysis

4.3 Guidance for ASIP Instruction Set Definition from Application Analysis

4.4 Allocation of Clock Cycles for Performing Different Arithmetic Operations and Computation of Mathematical Functions (Functional Equivalents of Mathematical Library Functions Used by the Application)

4.5 Clock Frequency Allocation

Chapter 5. Proposition of Datapath (Execution unit) Micro-architecture and Machine Instruction Set Design

5.1 Introduction

5.2 Micro-architecture Design and Philosophy

5.2.1 Description of Functional Blocks/Units Used in the Micro-architecture

5.3 Machine Instruction Set Design

5.3.1 Introduction

5.3.2. Classification of Instruction set
Chapter 6. Implementation of Control Part 91
 6.1 Introduction ... 91
 6.2 Hardware Flowchart Methodology 92
 6.2.1 Level-I and Level-II Hardware Flowcharts 92
 6.2.2 Level-I to level-II Hardware Flowchart Conversion 94
 6.2.3 Rules of operation ... 97
 6.3 Micro-instruction Design Philosophy 107
 6.3.1 Control Word (Micro-instruction) Description 107
 6.3.2 Micro-coding from hardware flowchart 112

Chapter 7. Exploration of Hardware Algorithms and Architectures of the
 Functional Blocks and their FPGA Implementations and Testing 119
 7.1 Introduction ... 119
 7.2 IGEN (Noise Generator) .. 119
 7.2.1 Testing of IGEN .. 122
 7.3 FASC (Floating-point Add-Subtract-Compare) 123
 7.4 FMPY (Floating-point Multiplier) 127
 7.5 FDIV (Floating-point Division) 130
 7.6 SEXP (Exponential Function) 132
 7.7 SCOS (Sine-COSine) .. 135
 7.8 Synthesis Results ... 139

Chapter 8. Development of Machine Instruction set Simulator 141
 8.1 Introduction ... 141